Problems marked with * are more difficult.

1. Compute ( you don't need to write the answer, just do it:

| 6-8 | $-6+8$ | $-8+(-6)$ | -24-7 | $-38+19$ |
| :---: | :---: | :---: | :---: | :---: |
| $-12+4$ | $-4-2$ | 21-28 | 16-(-6) | 47-54 |
| $-3-6$ | $9+(-8)$ | $-5-(-7)$ | $-37+18$ | $-17-17$ |
| $-7+10$ | 4-7 | $-37+21$ | $-9+(-8)$ | 0-38 |
| $10+(-6)$ | $-8+2$ | 16-9 | $34-35$ | $-18+36$ |

2. Draw triangle $A B C$ with side $|A B|=4 \mathrm{~cm}$, side $|B C|=6 \mathrm{~cm}$, and side $|C A|=7 \mathrm{~cm}$.

On the side BC mark a midpoint M (use the marks on a ruler to measure the side BC , as well as to open the compass to the right angle). Draw a segment AM. AM is a median.

Draw 2 other medians of the triangle ABC .
3. Draw triangle KLM with sides $|\mathrm{KL}|=5 \mathrm{~cm},|\mathrm{LM}|=8 \mathrm{~cm}$, and $|\mathrm{MK}|=10 \mathrm{~cm}$.

Using ruler triangle similar to the triangle on the picture or just two rulers draw all 3 altitudes in this triangle (remember, altitude - is a segment drawn
 from the vertex of the triangle to the opposite side on the right angle).
4. *Segment BM in the triangle ABC on the picture below, is a median. Prove, that the area of the triangle AMB is equal to the area of the triangle MBC. (Area of a triangle is equal to the half of the product of the altitude and the base to which this altitude is drawn,
$S_{\Delta}=\frac{1}{2} h \cdot a$, where $a$ is the base and $h$ is altitude)

5. Find coordinates of the points on each number line below.

6. Evaluate the following expressions in 2 ways: by first performing the operation in the parenthesis, and by first opening the parenthesis (follow the example:

$$
\begin{array}{ll}
34-(3-4)=34-(-1)=24+1=35 \\
34-(3-4)=34-3+4=35 \quad) \\
26-(18+(-7)), & (3-23)-(4-10) \\
& -84-(-18-6),
\end{array}
$$

7. Solve the following equations:

$$
\begin{aligned}
& (x-12) \cdot 8=56 \\
& 24 \cdot(z+9)=288 \\
& (y+25): 8=16
\end{aligned}
$$

