Geometry.

Parallelogram is a simple (non-self-
intersecting) quadrilateral with two pairs of parallel sides.
What else can we say about parallelogram? Is this enough as a definition?

Parallel sides of a parallelogram are equal. Does this statement need to be included into the definition or it can be proved based on the fact that they are parallel?

Let $A B C D$ be a parallelogram, we need to prove that $|A B|=|C D|$ and $|A D|=|B C|$.
Segment BD is a diagonal of the parallelogram. Angle $\angle A B D=\angle B D C$ as alternate interior angles (we can prove it based on the $5^{\text {th }}$ Euclid postulate), as well as angles $\angle B D A=\angle D B C$. BD is a common side for the triangles. Therefore, triangles ABD and BDC are congruent, based on the ASA criteria and have equal corresponding sides. Conclusion: $|A B|=|C D|$ and $|A D|=|B C|$.

Opposite angles of a parallelogram are equal, and adjacent angles are supplementary.
Diagonals of a parallelogram intersect at midpoint of both segments. Prove it. Also prove the converse theorem - if two diagonals of a quadrilateral intersect at midpoint of both, then this quadrilateral is a parallelogram.

Algebra.

1. Instead of M and N put the right expressions to get a true statement.
a. $(a+b+c)+(M-N+c)=4 a-2 b+2 c$
b. $(7 x-N)-(M+2 y)=3 x-3 y$
c. $(M+N)-(2 a-b)+(a-4 b)=5 a+7 b$
d. $(a-M)-(N+7 b)-(2 a+b)=-5 a-10 b$
e. $2 \cdot(M-b)=14 a-2 b$
f. $M(2 a+3 b)=-6 a-9 b$
g. $N \cdot(2 x-M)=12 x^{2}-18 x y$
h. $3 a \cdot(N+M)=15 a b c-3 a c^{2}$
2. Knowing that $A=a+b, B=3 a+3 b$, and $C=a-7 b$ find:
a. $A+B+C$
b. $A+B-C$
c. $A-B-C$
d. $-B-A-C$
3. Simplify the following expressions:
a. $a-(b-(a+b)-a)$
b. $\quad a-(a-(a-(a-b)))$
c. $a-(b-(a-b-(a-b)))$
d. $\quad b-(a-(a-(a-(a+b))))$
4. Prove that

$$
(n+1)!-n \cdot n!=n!
$$

(We use $!$ as the sign for the term "factorial", $n!=n \cdot(n-1)(n-2) \cdot \ldots \cdot 3 \cdot 2 \cdot 1)$

5

$$
\begin{aligned}
& (a+1)(a+1)(a+1) \\
& (a+b)(a-b)(a+b) \\
& (a+b+c)(a+1) \\
& (x+1)\left(x^{2}-x+1\right) \\
& \left(x^{3}+2 x-3\right)(2-3 x) \\
& (a+b+c)(a+b-c) \\
& -(a+b)(a+b) \\
& -(x-y)(x-y) \\
& -(5 a-2 b)(3 b+2 a)
\end{aligned}
$$

$$
\begin{aligned}
& (x-1)(x-1)(x-1) \\
& (m-n)(m-n)(m+n) \\
& (a-b-c)(a-1) ; \\
& (x-1)\left(x^{2}+x+1\right) \\
& \left(5 m^{2}-3 m n+n^{2}\right)\left(2 n-m^{2}\right) ; \\
& (a-b+c)(a-b-c) \\
& -(x-y)(x+y) \\
& -(2 m-n)(n-3 m) \\
& -7(x+8 y)(y-3 x)
\end{aligned}
$$

