Accelerated Math. Class work 18.

Algebra.

Positive rational number is a number which can be represented as a ratio of two natural numbers:

$$
a=\frac{p}{q} ; \quad p, q \in N
$$

As we know such number is also called a fraction, p in this fraction is a nominator and q is a denominator. Any natural number can be represented as a fraction with denominator 1 :

$$
b=\frac{b}{1} ; \quad b \in N
$$

Basic property of fraction: nominator and denominator of the fraction can be multiply by any non-zero number n, resulting the same fraction:

$$
a=\frac{p}{q}=\frac{p \cdot n}{q \cdot n}
$$

In the case that numbers p and q do not have common prime factors, the fraction $\frac{p}{q}$ is irreducible fraction. If $p<q$, the fraction is called "proper fraction", if $p>q$, the fraction is called "improper fraction".

If the denominator of fraction is a power of 10 , this fraction can be represented as a finite decimal, for example,
$\frac{37}{100}=\frac{37}{10^{2}}=0.37, \quad \frac{3}{10}=\frac{3}{10^{1}}=0.3, \quad \frac{12437}{1000}=\frac{12437}{10^{3}}=12,437$

$$
10^{n}=(2 \cdot 5)^{n}=2^{n} \cdot 5^{n}
$$

$$
\frac{2}{5}=\frac{2}{5^{1}}=\frac{2 \cdot 2^{1}}{5^{1} \cdot 2^{1}}=\frac{4}{10}=0.4
$$

Therefore, any fraction, which denominator is represented by $2^{n} \cdot 5^{m}$ can be written in a form of finite decimal.

Also, any finite decimal can be represented as a fraction with denominator 10^{n}.
$0.375=\frac{375}{1000}=\frac{3}{8}=\frac{3}{2^{3}} ;$
$0.065=\frac{65}{1000}=\frac{13 \cdot 5}{5^{3} 2^{3}}=\frac{13}{5^{2} 2^{3}} ;$
$6.72=\frac{672}{100}=\frac{168}{25}=\frac{168}{5^{2}} ;$
$0.034=\frac{34}{1000}=\frac{17 \cdot 2}{5^{3} 2^{3}}=\frac{17}{5^{3} 2^{2}} ;$

In other words, if the finite decimal is represented as an irreduceble fraction, the denominator of this fraction will not have other factors besides 5^{m} and 2^{n}. Converse statement is also true: if the irreducible fraction has denominator which only contains 5^{m} and 2^{n} than the fraction can be written as a finite decimal. (Irrdeuceble fraction can be represented as a finite decimal if and only if it has determinator conteining only 5^{m} and 2^{n} as factors.)

If the denominator of the irreducible fraction has a factor different from 2 and 5, the fraction cannot be represented as a finite decimal. If we try to use the long division process we will get an infinite decimal.

At each step during this division we have a remainder. They are the numbers from 1 to 73 . At some point during this division we will see the remainder which occurred before. Process will start to repeat itself.

How we can represent the periodic decimal as a fraction?

Let's take a look on a few examples: $0 . \overline{8}, 2.35 \overline{7}$, $0 . \overline{0108}$.

$$
\begin{aligned}
& \text { 1. } 0 . \overline{8} . \\
& \\
& x=0 . \overline{8} \\
& 10 x=8 . \overline{8} \\
& 10 x-x=8 . \overline{8}-0 . \overline{8} \\
& \quad=8 \\
& 9 x=8 \\
& x=\frac{8}{9}
\end{aligned}
$$

$$
\text { 2. } \begin{aligned}
& 2.35 \overline{7} \\
& x=2.35 \overline{7} \\
& 100 x=235 . \overline{7} \\
& 1000 x=2357 . \overline{7} \\
& 1000 x-100 x \\
& =2357 . \overline{7}-235 . \overline{7} \\
& =2122 \\
& x=\frac{2122}{900}
\end{aligned}
$$

3. $0 . \overline{0108}$
$x=0 . \overline{0108}$
$10000 x=108 . \overline{0108}$
$10000 x-x=108$
$x=\frac{108}{9999}$

Now consider $2.4 \overline{0}$ and $2.3 \overline{9}$
$x=2.4 \overline{0}$
$100 x-10 x=240-24$
$10 x=24 . \overline{0}$

$$
100 x=240 . \overline{0}
$$

$$
x=\frac{240-24}{90}=\frac{216}{90}=2.4
$$

$x=2.3 \overline{9}$
$10 x=23 . \overline{9}$
$100 x=239 . \overline{9}$
$100 x-10 x=239-23$
$x=\frac{239-23}{90}=\frac{216}{90}=2.4$

Exercises.

Write as a fraction:
$0 . \overline{3}$,
$0 . \overline{7}$,
$0.1 \overline{2}, \quad 1.12 \overline{3}, \quad 7.5 \overline{4}$,
$0 . \overline{12}, \quad 1.0 \overline{12}$.

Geometry.

Pythagorean theorem.
In a right triangle the side opposite the right angle is called the hypotenuse (side c in the figure). The sides adjacent to the right
 angle are called legs (or catheti, singular: cathetus).

Pythagorean theorem is states that the square of the hypotenuse is equal to the sum of square of legs. $c^{2}=a^{2}+b^{2}$

There are numneros proofs if this theorem, but let's see one.

4 identical right triangles are arranged as shown on the picture. He area of the big square is $S=(a+b)$.
$a(a+b)=(a+b)^{2}$, the are of the small square is $s=c^{2}$. The area of 4 triangles is $4 \cdot \frac{1}{2} a b=2 a b$. But also cab be represented as $S-s=2 a b$

$$
\begin{gathered}
2 a b=(a+b) \cdot(a+b)-c^{2}=a^{2}+2 a b+b^{2}-c^{2} \\
\Rightarrow \quad a^{2}+b^{2}=c^{2}
\end{gathered}
$$

