MATH CLUB: INVERSION

SEPTEMBER 24, 2017

INVERSION

Definition. Let S be a circle with center at O and radius r. Inversion in circle S is the transformation I of the plane that sends every point P to a point P' such that

- P' is on the ray OP
- $OP \cdot OP' = r^2$

Note that I(O) is undefined.

Inversion is not a rigid motion — it doesn't preserve distances. Yet, it has a number of interesting properties summarized below.

Theorem 1. Let I be an inversion in circle S, with center at O and radius r. Then

- **1.** I send every straight line not containing O to a circle through O. Conversely, it send every circle through O to a straight line.
- 2. I sends every circle not containing O to another circle.

Note that while I sends circles to circles, it doesn't send center of a circle to the center of transformed circle.

Theorem 2. Let I be an inversion. Then I preserves angles: if two lines l, m intersect at point P at angle α , then I(l), I(m) will intersect at point I(P) at angle α , and similar if one or both lines is replaced by a circle.

(By definition angle between two circles at intersection point P is the angle between their tangent lines at P.)

If two circles C_1, C_2 go through O and are tangent to each other at O, then $I(C_1), I(C_2)$ are two parallel lines. Conversely, if l,m are two parallel lines which do not go through O, then I(l), I(m) are two circles that are tangent at point O.

Some problems

- 1. Given two non-inersecting circles C_1, C_2 and a point P (outside of both circles), construct a circle through P which is tangent to both S_1, S_2 .
- **2.** Given three circles C_1, C_2, C_3 such that C_1 and C_2 are externally tangent to each other and C_3 is outside C_1, C_2 , can you construct the fourth circle C tangent to C_1, C_2, C_3 ? [Hint: use inversion!]
- **3.** Prove Theorem 1.1. [Hint: use similar triangles to show that in the figure below $OA \cdot OA' = OP \cdot OP'$.]

- 4. (a) Let C be a circle, and let O be a point outside the circle. Let l be a line through O which intersects circle C at points P, P'. Prove that then $OP \cdot OP' = r^2$, where r is the lenght of the tangent from O to circle C.
 - (b) In the notation of part (a), show that in this case, inversion in circle with center at O and radius r sends circle C to itself.
 - (c) Prove Theorem 1.2.
- 5. Let two circles S_1, S_2 be tangent to each other, with one circle inside the other, as shown in the figure below. Construct a sequence of circles C_1, C_2, \ldots , which are tangent to both S_1, S_2 , and each next one is tangent to the previous (three first such circles are shown in the figure below by dashed lines). Prove that then centers of all circles C_i lie on some circle.

6. And now for something completely different... (and simple!)

You have a collection of numbers 1, 2, ..., 25 written on the board. Every minute Daniil chooses a pair of numbers, erases them, and writes a new number instead: if the numbers were a, b, then he replaces them with a + b + ab. He repeats this until there is a single number written on the board. What is this number?