MATH CLUB: INVERSION

SEPTEMBER 24, 2017

Inversion

Definition. Let S be a circle with center at O and radius r. Inversion in circle S is the transformation I of the plane that sends every point P to a point P^{\prime} such that

- P^{\prime} is on the ray $O P$
- $O P \cdot O P^{\prime}=r^{2}$

Note that $I(O)$ is undefined.
Inversion is not a rigid motion - it doesn't preserve distances. Yet, it has a number of interesting properties summarized below.

Theorem 1. Let I be an inversion in circle S, with center at O and radius r. Then

1. I send every straight line not containing O to a circle through O. Conversely, it send every circle through O to a straight line.
2. I sends every circle not containing O to another circle.

Note that while I sends circles to circles, it doesn't send center of a circle to the center of transformed circle.

Theorem 2. Let I be an inversion. Then I preserves angles: if two lines l, m intersect at point P at angle α, then $I(l), I(m)$ will intersect at point $I(P)$ at angle α, and similar if one or both lines is replaced by a circle.
(By definition angle between two circles at intersection point P is the angle between their tangent lines at P.)

If two circles C_{1}, C_{2} go through O and are tangent to each other at O, then $I\left(C_{1}\right), I\left(C_{2}\right)$ are two parallel lines. Conversely, if l, m are two parallel lines which do not go through O, then $I(l), I(m)$ are two circles that are tangent at point O.

1. Given two non-inersecting circles C_{1}, C_{2} and a point P (outside of both circles), construct a circle through P which is tangent to both S_{1}, S_{2}.
2. Given three circles C_{1}, C_{2}, C_{3} such that C_{1} and C_{2} are externally tangent to each other and C_{3} is outside C_{1}, C_{2}, can you construct the fourth circle C tangent to C_{1}, C_{2}, C_{3} ? [Hint: use inversion!]
3. Prove Theorem 1.1. [Hint: use similar triangles to show that in the figure below $O A \cdot O A^{\prime}=O P \cdot O P^{\prime}$.]

4. (a) Let C be a circle, and let O be a point outside the circle. Let l be a line through O which intersects circle C at points P, P^{\prime}. Prove that then $O P \cdot O P^{\prime}=r^{2}$, where r is the lenght of the tangent from O to circle C.
(b) In the notation of part (a), show that in this case, inversion in circle with center at O and radius r sends circle C to itself.
(c) Prove Theorem 1.2.
5. Let two circles S_{1}, S_{2} be tangent to each other, with one circle inside the other, as shown in the figure below. Construct a sequence of circles C_{1}, C_{2}, \ldots, which are tangent to both S_{1}, S_{2}, and each next one is tangent to the previous (three first such circles are shown in the figure below by dashed lines). Prove that then centers of all circles C_{i} lie on some circle.

6. And now for something completely different... (and simple!)

You have a collection of numbers $1,2, \ldots, 25$ written on the board. Every minute Daniil chooses a pair of numbers, erases them, and writes a new number instead: if the numbers were a, b, then he replaces them with $a+b+a b$. He repeats this until there is a single number written on the board.

What is this number?

