MATH CLUB: INVERSION 2

OCT 1, 2017

Inversion

Definition. Let S be a circle with center at O and radius r. Inversion in circle S is the transformation I of the plane that sends every point P to a point P^{\prime} such that

- P^{\prime} is on the ray $O P$
- $O P \cdot O P^{\prime}=r^{2}$

Note that $I(O)$ is undefined.
Inversion is not a rigid motion - it doesn't preserve distances. Yet, it has a number of interesting properties summarized below.

Theorem 1. Let I be an inversion in circle S, with center at O and radius r. Then

1. I send every straight line not containing O to a circle through O. Conversely, it send every circle through O to a straight line.
2. I sends every circle not containing O to another circle.

Note that while I sends circles to circles, it doesn't send center of a circle to the center of transformed circle.

Theorem 2. Let I be an inversion. Then I preserves angles: if two lines l, m intersect at point P at angle α, then $I(l), I(m)$ will intersect at point $I(P)$ at angle α, and similar if one or both lines is replaced by a circle.
(By definition angle between two circles at intersection point P is the angle between their tangent lines at P.)

If two circles C_{1}, C_{2} go through O and are tangent to each other at O, then $I\left(C_{1}\right), I\left(C_{2}\right)$ are two parallel lines. Conversely, if l, m are two parallel lines which do not go through O, then $I(l), I(m)$ are two circles that are tangent at point O.

More problems

1. Given two non-inersecting circles C_{1}, C_{2} and a point P (outside of both circles), construct a circle through P which is perpendicular to both C_{1}, C_{2}.
2. Let us consider points of the plane as complex numebrs in the usual way: point with coordinates (a, b) corresponds to complex number $z=a+b i$. Consider the transformation of the plane given by

$$
z \mapsto \frac{1}{\bar{z}}
$$

where \bar{z} is the complex conjugate of $z: \overline{a+b i}=a-b i$. Prove that this transformation is an inversion, with center at $(0,0)$.
3. Find all positive integers p, q such that $p^{2017}+q$ is a multiple of $p q$, and p, q are relatively prime.
4. On a screen of 2017×2017 pixels, at least $2016^{2}+1$ pixels are lit. Every second, if in some 2×2 square of the screen three pixels are dark, the fourth one goes dark as well. Prove that nevertheless, at all times at least one pixels will stay lit.
*5. For four complex numbers $z_{1}, z_{2}, z_{3}, z_{4}$, define their cross-ratio by

$$
\left(z_{1}, z_{2} ; z_{3}, z_{4}\right)=\frac{\left(z_{3}-z_{1}\right)\left(z_{4}-z_{2}\right)}{\left(z_{3}-z_{2}\right)\left(z_{4}-z_{1}\right)}
$$

(a) Show that the cross-ratio doesn't change under the transformations $z \mapsto c z, z \mapsto z+c, z \mapsto 1 / z$.
(b) Show that given three distinct complex numbers z_{2}, z_{3}, z_{4}, one can find a composition of these transformations which sends points z_{2}, z_{3}, z_{4} to $0,1, \infty$ respectively.
(c) Deduce that four points $z_{1}, z_{2}, z_{3}, z_{4}$ lie on the same line or circle if and only if the cross-ratio $\left(z_{1}, z_{2} ; z_{3}, z_{4}\right)$ is real.

