MATH CLUB: INVERSION 2 OCT 1, 2017

INVERSION

Definition. Let S be a circle with center at O and radius r. Inversion in circle S is the transformation I of the plane that sends every point P to a point P' such that

- P' is on the ray OP
- $OP \cdot OP' = r^2$

Note that I(O) is undefined.

Inversion is not a rigid motion — it doesn't preserve distances. Yet, it has a number of interesting properties summarized below.

Theorem 1. Let I be an inversion in circle S, with center at O and radius r. Then

- **1.** I send every straight line not containing O to a circle through O. Conversely, it send every circle through O to a straight line.
- 2. I sends every circle not containing O to another circle.

Note that while I sends circles to circles, it doesn't send center of a circle to the center of transformed circle.

Theorem 2. Let I be an inversion. Then I preserves angles: if two lines l, m intersect at point P at angle α , then I(l), I(m) will intersect at point I(P) at angle α , and similar if one or both lines is replaced by a circle.

(By definition angle between two circles at intersection point P is the angle between their tangent lines at P.)

If two circles C_1, C_2 go through O and are tangent to each other at O, then $I(C_1), I(C_2)$ are two parallel lines. Conversely, if l,m are two parallel lines which do not go through O, then I(l), I(m) are two circles that are tangent at point O.

More problems

- 1. Given two non-inersecting circles C_1, C_2 and a point P (outside of both circles), construct a circle through P which is perpendicular to both C_1, C_2 .
- **2.** Let us consider points of the plane as complex numbers in the usual way: point with coordinates (a, b) corresponds to complex number z = a + bi. Consider the transformation of the plane given by

$$z\mapsto \frac{1}{\overline{z}}$$

where \overline{z} is the complex conjugate of z: $\overline{a+bi} = a-bi$. Prove that this transformation is an inversion, with center at (0,0).

- **3.** Find all positive integers p, q such that $p^{2017} + q$ is a multiple of pq, and p, q are relatively prime.
- 4. On a screen of 2017×2017 pixels, at least $2016^2 + 1$ pixels are lit. Every second, if in some 2×2 square of the screen three pixels are dark, the fourth one goes dark as well. Prove that nevertheless, at all times at least one pixels will stay lit.
- *5. For four complex numbers z_1, z_2, z_3, z_4 , define their cross-ratio by

$$(z_1, z_2; z_3, z_4) = \frac{(z_3 - z_1)(z_4 - z_2)}{(z_3 - z_2)(z_4 - z_1)}.$$

- (a) Show that the cross-ratio doesn't change under the transformations $z \mapsto cz, z \mapsto z+c, z \mapsto 1/z$.
- (b) Show that given three distinct complex numbers z_2, z_3, z_4 , one can find a composition of these transformations which sends points z_2, z_3, z_4 to $0, 1, \infty$ respectively.
- (c) Deduce that four points z_1, z_2, z_3, z_4 lie on the same line or circle if and only if the cross-ratio $(z_1, z_2; z_3, z_4)$ is real.