School Nova

Function Equations
Alexander Kirillov, Rahul Mane

1. Prove that there is no function f from the set of non-negative integers to itself such that

$$
f(f(n))=n+1
$$

for every n .
2. Find all functions $f: \mathbb{Q} \rightarrow \mathbb{Q}$ such that

$$
f(x)+f(t)=f(y)+f(z)
$$

for all rational numbers $x<y<z<t$ that form an arithmetic progression. (\mathbb{Q} is the set of all rational numbers.)
3. Let \mathbb{R} be the set of real numbers. Determine all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
f\left(x^{2}-y^{2}\right)=x f(x)-y f(y)
$$

For all pairs of real numbers x and y.
4. Find all injective functions $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfying

$$
f(x y)(f(x)-f(y))=(x-y) f(x) f(y)
$$

(Note: injective means that distinct inputs always have distinct outputs, i.e. if $x \neq y$ then $f(x) \neq f(y)$.)
5. Does there exist a function $s: \mathbb{Q} \rightarrow\{-1,1\}$ such that if x and y are distinct rational numbers satisfying $x y=1$ or $x+y \in\{0,1\}$, then $s(x) s(y)=-1$? Justify your answer. (2004 IMO Shortlist)
6. For which positive integers n does there exist a function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f^{n}(x)=-x$ for all x and $f^{m}(x) \neq-x$ for all x and $m<n$? (Here f^{n} denotes f composed with itself n times; for example, $f^{4}(x)=f(f(f(f(x))))$.)
For which positive integers n does there exist a function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f^{n}(x)=1 / x$ for all x and $f^{m}(x) \neq 1 / x$ for all x and $m<n$?

Note: the above problems are from the following competitions: 1 is modified from 1987 IMO; 2 is from 2015 USAJMO; 3 is from 2002 USAMO; 4 is modified from 2001 IMO Shortlist; 5 is from 2004 IMO Shortlist.

