School Nova Function Equations Alexander Kirillov, Rahul Mane

1. Prove that there is no function f from the set of non-negative integers to itself such that

$$f(f(n)) = n + 1$$

for every n.

2. Find all functions $f : \mathbb{Q} \to \mathbb{Q}$ such that

$$f(x) + f(t) = f(y) + f(z)$$

for all rational numbers x < y < z < t that form an arithmetic progression. (\mathbb{Q} is the set of all rational numbers.)

3. Let \mathbb{R} be the set of real numbers. Determine all functions $f : \mathbb{R} \to \mathbb{R}$ such that

$$f(x^2 - y^2) = xf(x) - yf(y)$$

For all pairs of real numbers x and y.

4. Find all injective functions $f : \mathbb{R} \to \mathbb{R}$ satisfying

$$f(xy)(f(x) - f(y)) = (x - y)f(x)f(y)$$

(Note: injective means that distinct inputs always have distinct outputs, i.e. if $x \neq y$ then $f(x) \neq f(y)$.)

- 5. Does there exist a function $s : \mathbb{Q} \to \{-1, 1\}$ such that if x and y are distinct rational numbers satisfying xy = 1 or $x + y \in \{0, 1\}$, then s(x)s(y) = -1? Justify your answer. (2004 IMO Shortlist)
- 6. For which positive integers n does there exist a function f: R → R such that fⁿ(x) = -x for all x and f^m(x) ≠ -x for all x and m < n? (Here fⁿ denotes f composed with itself n times; for example, f⁴(x) = f(f(f(f(x)))).)
 For which positive integers n does there exist a function f : R → R such that fⁿ(x) = 1/x for all x and f^m(x) ≠ 1/x for all x and m < n?

Note: the above problems are from the following competitions: 1 is modified from 1987 IMO; 2 is from 2015 USAJMO; 3 is from 2002 USAMO; 4 is modified from 2001 IMO Shortlist; 5 is from 2004 IMO Shortlist.