MATH CLUB: NUMBER THEORY: FERMAT'S THEOREM AND EULER FUNCTION

NOV 12, 2017

The following two results are frequently useful in doing number theory problems:
Theorem (Fermat's Little theorem). For any prime p and any number a not divisible by p, we have $a^{p-1}-1$ is divisible by p, i.e.

$$
a^{p-1} \equiv 1 \quad \bmod p
$$

This shows that remainders of $a^{k} \bmod p$ will be repeating periodically with period $p-1$ (or smaller).
A similar statement holds for remainders modulo n, where n is not a prime. However, in this case $p-1$ must be replaced by a more complicated number: the Euler function of n.

Definition. For any positive integer n, Euler's function $\varphi(n)$ is defined by

$$
\varphi(n)=\text { number of integers } a, 1 \leq a \leq n-1, \text { which are relatively prime with } n
$$

It is known that Euler's function $\varphi(n)$ is multiplicative:

$$
\begin{equation*}
\varphi(m n)=\varphi(m) \varphi(n) \text { if } \operatorname{gcd}(m, n)=1 \tag{1}
\end{equation*}
$$

Theorem (Euler's theorem). For any integer $n>1$ and any number a which is relatively prime with n, we have $a^{\varphi(n)}-1$ is divisible by n, i.e.

$$
a^{\varphi(n)} \equiv 1 \quad \bmod n
$$

For example, $\varphi(10)=4$. This means that for any number a which is relativley prime with 10 , remainders of a^{k} modulo 10 (i.e., the last digit of a^{k}) repeat periodically with period 4.

1. Show that equation

$$
a^{2}+b^{2}-8 c=6
$$

has no integer solutions.
2. Compute $\varphi(25) ; \varphi(125) ; \varphi(100)$.
3. Find 5^{2092} modulo 11 . What about the same number, but modulo 11^{2} ?
4. FInd the last two digits of $14^{14^{14}}$.
5. FInd at least one n such that 2013^{n} ends in 001 (i.e. the rightmost three digits of 2013^{n} are 001). Can you find the smallest such n ?
6. Find the last three digits of 7^{1000}. [Hint: first find what it is $\bmod 2^{3}$ and $\bmod 5^{3}$.]
*7. This is not so much a problem as a mini research topic.
The number 76 had the property that $76^{2}=5776$ ends again in 76 . Can you continue this and get a three-digit number $a 76$ so that its square again ends in $a 76$? Do you think it can be continued to 4-digit number, 5 -digit number, ...? And are there other numbers with the same property?

Hint: last k digits are the same as remainder of a number $\bmod 10^{k}$. What if you ask similar question, but in about last digits in base 2 ? in base 5 ?

