MATH CLUB: NUMBER THEORY: FERMAT'S THEOREM AND EULER FUNCTION

NOV 12, 2017

The following two results are frequently useful in doing number theory problems:

Theorem (Fermat's Little theorem). For any prime p and any number a not divisible by p, we have $a^{p-1}-1$ is divisible by p, i.e.

 $a^{p-1} \equiv 1 \mod p.$

This shows that remainders of $a^k \mod p$ will be repeating periodically with period p-1 (or smaller).

A similar statement holds for remainders modulo n, where n is not a prime. However, in this case p-1 must be replaced by a more complicated number: the Euler function of n.

Definition. For any positive integer n, Euler's function $\varphi(n)$ is defined by

 $\varphi(n) =$ number of integers $a, 1 \le a \le n-1$, which are relatively prime with n

It is known that Euler's function $\varphi(n)$ is multiplicative:

(1)
$$\varphi(mn) = \varphi(m)\varphi(n)$$
 if $gcd(m,n) = 1$.

Theorem (Euler's theorem). For any integer n > 1 and any number a which is relatively prime with n, we have $a^{\varphi(n)} - 1$ is divisible by n, i.e.

$$a^{\varphi(n)} \equiv 1 \mod n.$$

For example, $\varphi(10) = 4$. This means that for any number *a* which is relativley prime with 10, remainders of a^k modulo 10 (i.e., the last digit of a^k) repeat periodically with period 4.

1. Show that equation

$$a^2 + b^2 - 8c = 6$$

has no integer solutions.

- **2.** Compute $\varphi(25)$; $\varphi(125)$; $\varphi(100)$.
- **3.** Find 5^{2092} modulo 11. What about the same number, but modulo 11^2 ?
- **4.** FInd the last two digits of $14^{14^{14}}$.
- 5. Find at least one n such that 2013^n ends in 001 (i.e. the rightmost three digits of 2013^n are 001). Can you find the smallest such n?
- **6.** Find the last three digits of 7^{1000} . [Hint: first find what it is mod 2^3 and mod 5^3 .]
- ***7.** This is not so much a problem as a mini research topic.

The number 76 had the property that $76^2 = 5776$ ends again in 76. Can you continue this and get a three-digit number a76 so that its square again ends in a76? Do you think it can be continued to 4-digit number, 5-digit number, ...? And are there other numbers with the same property?

Hint: last k digits are the same as remainder of a number mod 10^k . What if you ask similar question, but in about last digits in base 2? in base 5?