MATH 10
 ASSIGNMENT 2: OPEN AND CLOSED SETS

SEPT 24, 2017

Definition 1. A metric space is a set X with a distance function: for any $x, y \in X$ we have a real number $d(x, y)$ such that

1. $d(x, y)=d(y, x)$
2. $d(x, y) \geq 0$ for any x, y
3. $d(x, y)=0$ if and only if $x=y$
4. Triangle inequality: $d(x, y)+d(y, z) \geq d(x, z)$.

Usual examples are $\mathbb{R}, \mathbb{R}^{2}, \ldots$, but there are other examples as well.
Given a point $x \in X$ and a positive real number ε, we define ε-neighborhood of x by

$$
B_{\varepsilon}(x)=\{y \in X \mid d(x, y)<\varepsilon\}
$$

If $S \subset X$, denote by S^{\prime} the complement of S. Then, for any $x \in X$, we can have one of three possibilities:

1. There is a neighborhood $B_{\varepsilon}(x)$ which is completely inside S (in paritcular, this implies that $x \in S$). Such points are called interior points of S; set of interior points is denoted by $\operatorname{Int}(S)$.
2. There is a neighborhood $B_{\varepsilon}(x)$ which is completely inside S^{\prime} (in paritcular, this implies that $x \in S^{\prime}$). Thus, $x \in \operatorname{Int}\left(S^{\prime}\right)$.
3. Any neighborhood of x contains points from S and points from S^{\prime} (in this case, we coudl have $x \in S$ or $\left.x \in S^{\prime}\right)$. Set of such points is called the boundary of S and denoted ∂S.

Definition 2. A set S is called open if every point $x \in S$ is an interior point: $S=\operatorname{Int}(S)$. A set S is called closed if $\partial S \subset S$.

Homework

1. Show that set \mathbb{R}^{2} with distance defined by

$$
d\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=\left|x_{1}-x_{2}\right|+\left|y_{1}-y_{2}\right|
$$

is a metric space. (This distance is sometimes called Manhattan or taxicab distance - can you guess why?)
2. For each of the following subsets of \mathbb{R}, find its interior and boundary and determine if it is open, closed, or neither.
(a) Set $\mathbb{N}=\{1,2,3, \ldots\}$.
(b) Interval $[0,1]]$
(c) Open interval $(0,1)$
(d) Interval $[0,1)$.
(e) Set of all rational numbers
(f) Set consisting of just two points $\{0,1\}$
*(g) Set $x^{3}+2 x+1>0$
Are there any subsets of \mathbb{R} which are both open and closed?
3. Show that a set S is open if and only if its complement S^{\prime} is closed.
*4. For a set S, let $\bar{S}=S \cup \partial S=\{x \mid$ In any neighborhood of x, there are elements of $S\}$. Prove that \bar{S} is closed. (It is called the closure of S.)
5. Show that union and intersection of two open sets is open. Is it true if we replace two sets by any collection of open sets?

Same question about closed sets.

