MATH 10
 ASSIGNMENT 11: CONTINUOUS FUNCTIONS AND INTERMEDIATE VALUE THEOREM
 JAN 14, 2018

Definition. A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is called continuous if, for every sequence $a_{n} \in \mathbb{R}$ which has a limit: $\lim a_{n}=A \in \mathbb{R}$, the sequence $f\left(a_{n}\right)$ also has a limit and $\lim f\left(a_{n}\right)=f(A)$.

It was proved last time that the sum and product of continuous functions is continuous; the same is true for f / g as long as $g \neq 0$. In particular, all polynomials and rational fucntions are continuous everywhere they are defined.

Theorem (Intermediate Value Theorem). Let $f(x)$ be a continuous fucntion on the interval $[a, b]$ such that $f(a)<0$ and $f(b)>0$. Then there exists a point $c \in(a, b)$ such that $f(c)=0$.

A proof was discussed in class.

Homework

1. Prove that polynomial $x^{3}+3 x-2$ has a root between 0 and 5 .
2. Prove that there exists a poistive number x such that $\sin (x)=0.5 x$. (You can use without proof the fact that $\sin (x)$ is continuous).
3. Let $f(x)=x^{2 n+1}+\ldots$ be a polynomial of odd degree, with leading coefficient 1 .
(a) Prove that for large enough $x, f(x)>0$. (I.e., there exists a real number M such that for all $x \geq M, f(x)>0$.)
(b) Prove that for large enough $x, f(-x)<0$.
(c) Porve that $f(x)$ has at least one real root.
4. A traveler leaves town A at 9 am on Monday and arrives at town B at 4 pm the same day. He spends the night at town B, leaves it at 9 am on Tuesday, and returns to town A by 4 pm on Tuesday, following the same road.

Prove that there is a point on the road which he passed at exact same time on Monday and Tuesday.

Note that we are not assuming that the traveler goes at constant speed.
5. Given a convex polygon S and a point A inside it, prove that there exists a chord of S which has A as the midpoint. [Hint: consider difference of lengths of the two pieces of a chord through A as a fucntion of the angle.]
*6. We are given 10 red and 10 blue points in the plane, such that no three of them are on the same line. Prove that there is a line such that on each side of it there are 5 red and 5 blue points.

