MATH 10 ASSIGNMENT 12: SYSTEMS OF LINEAR EQUATIONS

 $\rm JANUARY~28,~2018$

 \mathbb{R}^n

We use notation \mathbb{R}^n for the set of all points in *n*-dimensional space. Such a point is described by an *n*-tuple of numbers (coordinates) x_1, x_2, \ldots, x_n . We will write them as a column of numbers:

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

We will make no distinction between a point and a vector (starting at the origin and ending at this point). Thus, we will also refer to points of \mathbb{R}^n as vectors.

We have two natural operations on \mathbb{R}^n : addition of vectors and multiplication by numbers:

$$\begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} + \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} x_1 + y_1 \\ x_2 + y_2 \\ \vdots \\ x_n + y_n \end{bmatrix}$$
$$c \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} cx_1 \\ cx_2 \\ \vdots \\ cx_n \end{bmatrix}, \quad c \in \mathbb{R}$$

These operations satisfy obvious associativity, commutativity, and distributivity properties. Note that there is no multiplication of vectors — only multiplication of a vector by a number.

Systems of linear equations

We will be considering systems of linear equations such as

$$2x_1 + x_2 + 3x_3 = 2$$

$$4x_1 - 7x_2 + 5x_3 = 1$$

Such a system of equations is determined by the collection of coefficients, which naturally form a rectangular array (matrix), and the numbers in the right-hand side of the equation. In the example above the matrix is

$$A = \begin{bmatrix} 2 & 1 & 3 \\ 4 & -7 & 5 \end{bmatrix}$$

and the right-hand side is $\mathbf{b} = \begin{bmatrix} 2\\1 \end{bmatrix}$.

Symbolically, we will write a system of linear equations as $A\mathbf{x} = \mathbf{b}$. We can put the matrix and the right-hand side together, forming what is sometimes called the *augmented* matrix:

$$A|\mathbf{b} = \begin{bmatrix} 2 & 1 & 3 & | & 2 \\ 4 & -7 & 5 & | & 1 \end{bmatrix}$$

ELEMENTARY ROW OPERATIONS

The main idea of solving an arbitrary system of linear equations is by transforming it to a simpler form. Transformation should not change the set of solutions. To do this, we will use the following elementary operations:

- Exchange two equations (= two rows of the augmented matrix)
- Multiply both sides of an equation (= one row of augmented matrix) by a non-zero number
- Add to one equation a multiple of another.

Applying these operations to bring your matrix to a simpler form is called *row reduction*, or *Gaussian elimination*

SIMPLE EXAMPLE

$$x_1 - 2x_2 + 2x_3 = 5$$
$$x_1 - x_2 = -1$$
$$-x_1 + x_2 + x_3 = 5$$

The augmented matrix is

$$\begin{bmatrix} 1 & -2 & 2 & | & 5 \\ 1 & -1 & 0 & | & -1 \\ -1 & 1 & 1 & | & 5 \end{bmatrix}$$

Using row operations, we can bring it to the form

$$\begin{bmatrix} 1 & -2 & 2 & | & 5 \\ 0 & 1 & -2 & | & -6 \\ 0 & 0 & 1 & | & 4 \end{bmatrix}$$

so the solution is

$$x_3 = 4$$

$$x_2 = -6 + 2x_3 = 2$$

$$x_1 = 5 - 2x_3 + 2x_2 = 1$$

ROW ECHELON FORM

In general, using row operations, every system can be brought to a form where each row begins with some number of zeroes, and each next row has more zeroes than the previous one:

$$\begin{bmatrix} X & * & * & * & * & * & * & | & * \\ 0 & 0 & 0 & X & * & * & * & | & * \\ 0 & 0 & 0 & 0 & X & * & * & | & * \end{bmatrix}$$

(here X's stand for non-zero entries).

To solve such a system, we do the following:

- Variables corresponding to columns with X's in them are called pivot variables; the remaining ones are called free variables.
- Values for free variables can be chosen arbitrarily. Values for pivot variables are then uniquely determined from the equations.

For example, in the system

$$x_1 + x_2 + x_3 = 5$$
$$x_2 + 3x_3 = 6$$

variables x_1, x_2 are pivot, and variable x_3 is free, so we can solve it by letting $x_3 = t$, and then

$$x_2 = 6 - 3x_3 = 6 - 3t$$

$$x_1 = 5 - x_2 - x_3 = -1 + 2t$$

Homework

1. Solve the following system of equations

$$w + x + y + z = 6$$
$$w + y + z = 4$$
$$w + y = 2$$

2. Solve the system of equations with the following matrix

$$\begin{bmatrix} 2 & -1 & 3 & | & 2 \\ 1 & 4 & 0 & | & -1 \\ 2 & 6 & -1 & | & 5 \end{bmatrix}$$

3. Solve the following system of equations

$$x_1 + x_2 + 3x_3 = 3$$

-x_1 + x_2 + x_3 = -1
$$2x_1 + 3x_2 + 8x_3 = 4$$

4. Consider the system of equations

$$3x - y + 2z = b_1$$
$$2x + y + z = b_2$$
$$x - 7y + 2z = b_3$$

- (a) If $b_1 = b_2 = b_3 = 0$, find all solutions
- (b) For which triples b_1, b_2, b_3 does it have a solution?
- 5. Consider a system of 4 equations in 5 variables.
 - (a) Show that if the right-hand side is zero, then this system must have a non-zero solution.
 - (b) Is it true if the right-hand side is non-zero?
- 6. If we have a system of k equations in n variables, how many free variables will there be? How many parameters will there be for a general solution?