MATH 10

ASSIGNMENT 12: SYSTEMS OF LINEAR EQUATIONS

\mathbb{R}^{n}

We use notation \mathbb{R}^{n} for the set of all points in n-dimensional space. Such a point is described by an n-tuple of numbers (coordinates) $x_{1}, x_{2}, \ldots, x_{n}$. We will write them as a column of numbers:

$$
\mathbf{x}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]
$$

We will make no distinction between a point and a vector (starting at the origin and ending at this point). Thus, we will also refer to points of \mathbb{R}^{n} as vectors.

We have two natural operations on \mathbb{R}^{n} : addition of vectors and multiplication by numbers:

$$
\begin{aligned}
{\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]+\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right] } & =\left[\begin{array}{c}
x_{1}+y_{1} \\
x_{2}+y_{2} \\
\vdots \\
x_{n}+y_{n}
\end{array}\right] \\
c\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right] & =\left[\begin{array}{c}
c x_{1} \\
c x_{2} \\
\vdots \\
c x_{n}
\end{array}\right], \quad c \in \mathbb{R}
\end{aligned}
$$

These operations satisfy obvious associativity, commutativity, and distributivity properties.
Note that there is no multiplication of vectors - only multiplication of a vector by a number.

Systems of linear equations

We will be considering systems of linear equations such as

$$
\begin{aligned}
& 2 x_{1}+x_{2}+3 x_{3}=2 \\
& 4 x_{1}-7 x_{2}+5 x_{3}=1
\end{aligned}
$$

Such a system of equations is determined by the collection of coefficients, which naturally form a rectangular array (matrix), and the numbers in the right-hand side of the equation. In the example above the matrix is

$$
A=\left[\begin{array}{ccc}
2 & 1 & 3 \\
4 & -7 & 5
\end{array}\right]
$$

and the right-hand side is $\mathbf{b}=\left[\begin{array}{l}2 \\ 1\end{array}\right]$.
Symbolically, we will write a system of linear equations as $A \mathbf{x}=\mathbf{b}$. We can put the matrix and the right-hand side together, forming what is sometimes called the augmented matrix:

$$
A \left\lvert\, \mathbf{b}=\left[\begin{array}{ccc|c}
2 & 1 & 3 & 2 \\
4 & -7 & 5 & 1
\end{array}\right]\right.
$$

Elementary row operations

The main idea of solving an arbitrary system of linear equations is by transforming it to a simpler form. Transformation should not change the set of solutions. To do this, we will use the following elementary operations:

- Exchange two equations (= two rows of the augmented matrix)
- Multiply both sides of an equation (= one row of augmented matrix) by a non-zero number
- Add to one equation a multiple of another.

Applying these operations to bring your matrix to a simpler form is called row reduction, or Gaussian elimination

Simple example

$$
\begin{aligned}
x_{1}-2 x_{2}+2 x_{3} & =5 \\
x_{1}-x_{2} & =-1 \\
-x_{1}+x_{2}+x_{3} & =5
\end{aligned}
$$

The augmented matrix is

$$
\left[\begin{array}{ccc|c}
1 & -2 & 2 & 5 \\
1 & -1 & 0 & -1 \\
-1 & 1 & 1 & 5
\end{array}\right]
$$

Using row operations, we can bring it to the form

$$
\left[\begin{array}{ccc:c}
1 & -2 & 2 & 5 \\
0 & 1 & -2 & -6 \\
0 & 0 & 1 & 4
\end{array}\right]
$$

so the solution is

$$
\begin{aligned}
& x_{3}=4 \\
& x_{2}=-6+2 x_{3}=2 \\
& x_{1}=5-2 x_{3}+2 x_{2}=1
\end{aligned}
$$

Row ECHELON FORM

In general, using row operations, every system can be brought to a form where each row begins with some number of zeroes, and each next row has more zeroes than the previous one:

$$
\left[\begin{array}{ccccccc|c}
X & * & * & * & * & * & * & * \\
0 & 0 & 0 & X & * & * & * & * \\
0 & 0 & 0 & 0 & X & * & * & *
\end{array}\right]
$$

(here X 's stand for non-zero entries).
To solve such a system, we do the following:

- Variables corresponding to columns with X^{\prime} 's in them are called pivot variables; the remaining ones are called free variables.
- Values for free variables can be chosen arbitrarily. Values for pivot variables are then uniquely determined from the equations.
For example, in the system

$$
\begin{array}{r}
x_{1}+x_{2}+x_{3}=5 \\
x_{2}+3 x_{3}=6
\end{array}
$$

varaibles x_{1}, x_{2} are pivot, and variable x_{3} is free, so we can solve it by letting $x_{3}=t$, and then

$$
\begin{aligned}
& x_{2}=6-3 x_{3}=6-3 t \\
& x_{1}=5-x_{2}-x_{3}=-1+2 t
\end{aligned}
$$

Homework

1. Solve the following system of equations

$$
\begin{array}{r}
w+x+y+z=6 \\
w+y+z=4 \\
w+y=2
\end{array}
$$

2. Solve the system of equations with the following matrix

$$
\left[\begin{array}{ccc|c}
2 & -1 & 3 & 2 \\
1 & 4 & 0 & -1 \\
2 & 6 & -1 & 5
\end{array}\right]
$$

3. Solve the following system of equations

$$
\begin{aligned}
x_{1}+x_{2}+3 x_{3} & =3 \\
-x_{1}+x_{2}+x_{3} & =-1 \\
2 x_{1}+3 x_{2}+8 x_{3} & =4
\end{aligned}
$$

4. Consider the system of equations

$$
\begin{aligned}
3 x-y+2 z & =b_{1} \\
2 x+y+z & =b_{2} \\
x-7 y+2 z & =b_{3}
\end{aligned}
$$

(a) If $b_{1}=b_{2}=b_{3}=0$, find all solutions
(b) For which triples b_{1}, b_{2}, b_{3} does it have a solution?
5. Consider a system of 4 equations in 5 variables.
(a) Show that if the right-hand side is zero, then this system must have a non-zero solution.
(b) Is it true if the right-hand side is non-zero?
6. If we have a system of k equations in n variables, how many free variables will there be? How many parameters will there be for a general solution?

