MATH 10 ASSIGNMENT 17: CROSS-PRODUCT MAR 25, 2018

SIGNED AREA: REVIEW

Recall that we had defined "wedge product" of two vectors in the plane by

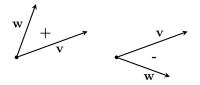
$$\mathbf{v} \wedge \mathbf{w} = x_1 y_2 - y_1 x_2$$

One can think of $\mathbf{v} \wedge \mathbf{w}$ as "signed area":

(1)

 $\mathbf{v} \wedge \mathbf{w} = \begin{cases} S_{ABCD}, & \text{if rotation from } \mathbf{v} \text{ to } \mathbf{w} \text{ is counterclockwise} \\ -S_{ABCD}, & \text{if rotation from } \mathbf{v} \text{ to } \mathbf{w} \text{ is clockwise} \end{cases}$

 $\in \mathbb{R}$



The wedge product (and thus, the signed area) is in many ways easier than the usual area. Namely, we have:

- 1. It is linear: $(\mathbf{v}_1 + \mathbf{v}_2) \wedge \mathbf{w} = \mathbf{v}_1 \wedge \mathbf{w} + \mathbf{v}_2 \wedge \mathbf{w}$
- **2.** It is anti-symmetric: $\mathbf{v} \wedge \mathbf{w} = -\mathbf{w} \wedge \mathbf{v}$

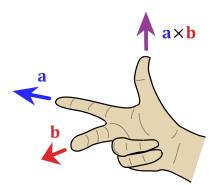
CROSS-PRODUCT

If \mathbf{v}, \mathbf{w} are two vectors in \mathbb{R}^3 , then we can define a different kind of product, called the cross-product, which is a vector in \mathbb{R}^3 , defined by

$$\begin{bmatrix} x_1 \\ y_1 \\ z_1 \end{bmatrix} \times \begin{bmatrix} x_2 \\ y_2 \\ z_2 \end{bmatrix} = \begin{bmatrix} y_1 z_2 - z_1 y_2 \\ z_1 x_2 - x_1 z_2 \\ x_1 y_2 - y_1 x_2 \end{bmatrix}$$

For example, if \mathbf{v} , \mathbf{w} are vectors in the xy plane, then $\mathbf{v} \times \mathbf{w}$ is the vector in the direction of z-axis. So defined cross-product has several important properties:

- 1. It is linear in \mathbf{v} , \mathbf{w} : $(\mathbf{v}' + \mathbf{v}'') \times \mathbf{w} = \mathbf{v}' \times \mathbf{w} + \mathbf{v}'' \times \mathbf{w}$, and similar for \mathbf{w}
- **2.** It is skew-symmetric: $\mathbf{v} \times \mathbf{w} = -\mathbf{w} \times \mathbf{v}$
- **3.** $|\mathbf{u}|$ = area of the parallelogram with sides \mathbf{v} , \mathbf{w}
- 4. \mathbf{u} is perpendicular to the plane containing \mathbf{v} , \mathbf{w}
- 5. Direction of **u** is determined by so-called right hand rule:



Thus, if **v** is along positive direction of x axis, and **w** is in the positive direction of y-axis, then $\mathbf{v} \times \mathbf{w}$ will be in the positive direction of the z-axis.

1. Check that if $\mathbf{i}, \mathbf{j}, \mathbf{k}$ are unit vectors along positive directions of x, y, z axes respectively, then

$$\mathbf{i} \times \mathbf{j} = \mathbf{k}$$

and similar for the cyclic permutations of these three vectors: $\mathbf{j} \times \mathbf{k} = \mathbf{i}, \, \mathbf{k} \times \mathbf{i} = \mathbf{j}$

- **2.** Use explicit computation to check that if $\mathbf{u} = \mathbf{v} \times \mathbf{w}$, then $\mathbf{u} \cdot \mathbf{v} = \mathbf{u} \cdot \mathbf{w} = 0$.
- 3. (a) Use cross-product to construct a vector perpendicular to both of the vectors below:

$$\begin{bmatrix} 1\\0\\2 \end{bmatrix}, \begin{bmatrix} 1\\1\\1 \end{bmatrix}$$

- (b) Write equation of the plane through points (0,0,0), (1,0,2), (1,1,1).
- 4. Show that if all vertices of a triangle in a plane have integer coordinates, then its area A is a half-integer (i.e., $2A \in \mathbb{Z}$). Is the same true for any polygon?
- 5. (From 2018 AMC 12A). The solutions to the equations $z^2 = 4 + 4\sqrt{15}i$ and $z^2 = 2 + 2\sqrt{3}i$, where $i = \sqrt{-1}$, form the vertices of a parallelogram in the complex plane. Find the area of this parallelogram.
- 6. For three vectors $\mathbf{u}, \mathbf{v}, \mathbf{w}$ in \mathbb{R}^3 , define the triple product $T(\mathbf{u}, \mathbf{v}, \mathbf{w})$ by the formula

$$T(\mathbf{u}, \mathbf{v}, \mathbf{w}) = (\mathbf{v} \times \mathbf{w}) \cdot \mathbf{u}$$

(note that it is a number, not a vector). The notation T is not standard.

- (a) Write an explicit formula the triple product in terms of x, y, and z components of $\mathbf{u}, \mathbf{v}, \mathbf{w}$.
- (b) Check that the triple product is linear in each of the three vectors and is skew-symmetric:

$$T(\mathbf{u}, \mathbf{v}, \mathbf{w}) = -T(\mathbf{v}, \mathbf{u}, \mathbf{w})$$

and similarly for any other interchange of any two of the three vectors.

(c) Show that for a parallelepiped P with edges given by vectors $\mathbf{u}, \mathbf{v}, \mathbf{w}$, its volume is given by

$$V_P = |T(\mathbf{u}, \mathbf{v}, \mathbf{w})|$$

7. What is the volume of a tetrahedron with vertices $A = (0, 0, 0), B = (x_1, y_1, z_1), C = (x_2, y_2, z_2), D = (x_3, y_3, z_3)$?