MATH 10

ASSIGNMENT 19: SIGN OF A PERMUTATION

APRIL 15, 2017

Definition. Let f be a permutation of $\{1, \ldots, n\}$. An disorder for f is a pair i, j such that $i<j$ but $f(i)>f(j)$. For example, for permutation

$$
\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 4 & 3 & 1
\end{array}\right)
$$

there are 4 disorders: $(1,2),(1,3),(1,4),(3,4)$.
A sign of a permutation is defined by

$$
\operatorname{sgn}(f)=(-1)^{\# \text { of disorders }}
$$

thus, $\operatorname{sgn}(f)=+1$ if the number of disorders is even (such permutations are called even), and $\operatorname{sgn}(f)=-1$ if the number of disorders is odd (such permutations are called odd).

1. A transposition is a permutation that exchanges exactly two elements and leaves other unchanged, i.e. a cycle of length 2 .
(a) Show that any permutation can be written as a product of transpositions of the form $(i i+1)$, so that at each step, we are always exchanging two elements that are next to each other. Write the permutation

$$
\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 2 & 1
\end{array}\right)
$$

in such a form.
(b) Write a transposition $(i j)(i<j)$ is such a form.
2. Prove that for any transposition $\tau=(i j)$, we have $\operatorname{sgn}(i j)=-1$.
3. Find the sign of a cycle of length n.
4. Let s be a permutation and let $\tau=(i i+1)$ be a transposition that exchanges two adjacent elements. Show that then $\operatorname{sgn}(\tau s)=-\operatorname{sgn}(s)$. [Hint: τ changes the order of exactly one pair.]
5. Show that if $s=\tau_{1} \ldots \tau_{k}$, where each τ is a transposition of the form $(i i+1)$ (compare with problem $1)$, then $\operatorname{sgn}(s)=(-1)^{k}$.
6. Show that for any permutations $s, t \in S_{n}$, we have $\operatorname{sgn}(s t)=\operatorname{sgn}(s) \operatorname{sgn}(t)$.
7. For any permutation $s \in S_{n}$ and a polynomial p in variables x_{1}, \ldots, x_{n}, we can define new polynomial $s(p)$ by permuting x_{1}, \ldots, x_{n} using s. For example, if $p=x_{1}^{2}+2 x_{2}+x_{1} x_{3}$, and $s=(12)$, then $s(p)=x_{2}^{2}+2 x_{1}+x_{2} x_{3}$.
(a) Show that for the polynomial in 3 variables $p=\left(x_{1}-x_{2}\right)\left(x_{1}-x_{3}\right)\left(x_{2}-x_{3}\right)$, and any permutation s, we have $s(p)=\operatorname{sgn}(s) \cdot p$.
(b) Can you construct a polynomial p in n variables such that $s(p)=\operatorname{sgn}(s) \cdot p$ for any permutation $s \in S_{n}$?
*8. Explain why the game of 15: https://en.wikipedia.org/wiki/15_puzzle is unsolvable

