Classwork 17

NEW MATERIAL

1. Count points

2.

\# of points: \qquad

Now try to divide these points into groups of 5 before counting them:
How many groups of 5 did you count? \qquad
How can we count them now?
By adding: \qquad
By skip counting \qquad
Does grouping make it easier to count? \qquad
Should we always add or skip count? \qquad

Multiplication is a mathematical operation where a number is added to itself a number of times. When we count point by grouping we multiply them. To express multiplication we write: 5 x \qquad $=$ \qquad

3. Calculate:

$3+3+3+3+3=$ \qquad , therefore $3 \times 5=$ \qquad
$7+7+7+7=$ \qquad , therefore 7 x _ $=$ \qquad
$4+4+4+4+4=$ \qquad , therefore 4 x _ $=$ \qquad
$8+8+8=$ \qquad , therefore 8 x \qquad $=$ \qquad
4.

$4+4+4 \ldots+4+4=$ \qquad
b times

16 times

\qquad
z times
5.

What would be the best strategy to count cells in each of the shapes below?

Write your answer below:
\qquad
\qquad
\qquad
\qquad

REVIEW

Remove parenthesis:
6. $a) a+b-(c+d)=$
b) $(\mathrm{a}-\mathrm{b})+(\mathrm{c}-\mathrm{d})=$
c) $a-b-(c-d-e)=$
7.

Calculate using the properties of addition:
$(37+92)+8=$
$15+38+22+25=$ \qquad
$(34+22)+(16+8)=$ \qquad
8.

Calculate:
$10 \times 10=$
$10 \times 10 \times 10=$
$1 \times 1 \times 1=$
6. There are N pencils in the red box and M pencils in the white box. Masha took \boldsymbol{a} pencils from the red box. Monty took \boldsymbol{b} pencils from the white box.
a) $\mathrm{N}+\mathrm{M}$ \qquad
b) $\mathrm{N}-\mathrm{a}$ \qquad
c) $\mathrm{M}-\mathrm{b}$ \qquad
d) $a+b$ \qquad

Revisiting two - dimensional geometric shapes

Triangle: 3 points (vertices) connected by 3 line segments
Quadrilateral: 4 vertices, connected by 4 segments
Pentagon (5 vertices), Hexagon (6 vertices), and so on.
All of them are special cases of a polygon: a figure consisting of some number of points (vertices), connected with line segments to form a closed figure.

These line segments are called the sides of the polygon.

Different types of polygon:

Triangle No. of Sides: 3

Quadrilateral No. of Sides: 4

Pentagon No. of Sides: 5
(All sides are straight) (One or more sides are curved)

NOT a Polygon

Heptagon No. of Sides: 7

Octagon No. of Sides: 8

Polygon

NOT a Polygon
(Open, not closed)

A Perimeter of a polygon is the sum of lengths of its sides.

$$
\mathbf{L}=\text { length }, \mathbf{W}=\text { width }, \text { and } \mathbf{P}=\text { perimeter }
$$

The perimeter of this rectangle is $\mathbf{7 + 3 + 7 + 3}=\mathbf{2 0}$
The perimeter of this regular pentagon is $\mathbf{3 + 3 + 3 + 3 + 3 = 5 \times 3 = 1 5}$

7. The perimeter of the quadrilateral $\boldsymbol{A B C D}$ equals 19 cm . What is the length of the side $\boldsymbol{A D}$?

8. Sallie computes the perimeter of a rectangle by adding the length $-l$, and width $-w$, and then doubling this sum.

Eric computes the perimeter of a rectangle by doubling the length $-l$, doubling the width $-w$, and then adding the doubled amounts.
a) Write an expression for Sallie's way of calculating the perimeter. Write an expression for Eric's way as well.
b) Use both of the expressions to find the perimeter of a rectangle with length 30 and width 75 .
c) Explain why Sallie and Eric always get the same answer, no matter what the length and width of the rectangle are.

Challenge yourself

9.

Solve each word problem:

1. A line segment was split into 8 parts. Each part was further split into 5 sections. How many sections was the segment split into?
2. A watermelon can be balanced on a scale by \boldsymbol{x} apples. An apple can be balanced by \boldsymbol{q} strawberries. How many strawberries are needed to balance a watermelon?
