SchoolNova, Math 5c
 Homework 21
 Warm up for Math Battle!
 May 13, 2018

1. Consider the sequence $7,7^{2}, 7^{3} \ldots$. Show that there are two numbers in this sequence which have the same last two digits.
2. A deck of cards is dealt out.
(a) What is the probability that the fourth card is an ace?
(b) What is the probability that the first ace occurs on the fourth card?
3. (a) An urn contains 5 red and 7 green balls. We draw one ball from the urn. What is the probability that it is red?
(b) We put back the previously drawn ball.
(c) Next, we draw 2 balls without replacement. What is the probability that both balls are red?
4. (a) Roll two dice. What is the probability that both show the same face?
(b) Roll three dice. What is the probability that exactly two of them show the same face? What is the probability that at least two of them show the same face?
(c) Roll four dice. What is the probability that no two show the same face (that is, all faces are different)?
5. Solve the equation

$$
1-1999(1-1999(1-1999 x))=x
$$

6. Find the sum:

$$
\frac{1}{1 \times 2}+\frac{1}{2 \times 3}+\frac{1}{3 \times 4} \cdots \frac{1}{11 \times 12}
$$

(There is a clever trick)
7. Given

$$
S=1!+2!+3!+\ldots 98!+99!
$$

then the units digit in the value of S is
(a) 9
(b) 8
(c) 5
(d) 3
(e) 0
8. Given three numbers, x, x^{x} and $x^{x^{x}}$, where $0.9<x<1.0$, arrange the numbers in order of increasing magnitude.
9. Show that if n and m are divisible by d, then each of the following numbers is divisible by d :
(a) $n+m$
(b) $5 n+3 m$
10. The Fibonacci sequence is given by $F_{1}=1, F_{2}=1$, and $F_{n}=F_{n-1}+F_{n-2}$, for $n>2$. Here are the first few Fibonacci numbers:

$$
1,1,2,3,5,8 \ldots
$$

(a) List the first 20 Fibonacci numbers.
(b) Show that

$$
\begin{equation*}
\binom{3}{0}+\binom{2}{1}=F_{4} . \tag{1}
\end{equation*}
$$

(c) Show that

$$
\begin{equation*}
\binom{4}{0}+\binom{3}{1}+\binom{2}{2}=F_{5} . \tag{2}
\end{equation*}
$$

11. A parallelogram is a quadrilateral, in which opposite sides are parallel.

(a) Show that in a parallelogram, diagonally opposite angles are equal, that is, $\angle A=\angle C$ and $\angle B=\angle D$.
(b) Show that opposite sides are equal, that is $\overline{A B}=\overline{C D}$, and $\overline{B C}=\overline{A D}$. (Hint: Use the properties of triangles)
