MATH 6: ASSIGNMENT 18

Graphs

Generally, a graph of function $y=f(x)$ is some line in the $x-y$ plane. If one has two graphs $y=f(x)$ and $y=g(x)$ one can find intersection points of corresponding graphs by solving the system of equations. For example, the intersection point of two straight lines $y=x+2$ and $y=-x$ is the point $(-1,1)$ as $x=-1$ and $y=1$ satisfy both of these equations that is the point $(-1,1)$ lies simultaneously on both straight lines.

$$
\text { GRAPHS OF } y=|x| \text { AND } y=x^{2}
$$

The figures below show graphs of functions $y=|x|$ and $y=x^{2}$; the latter graph is called a parabola.

And here is what we can do to draw a graph of any parabola of the sort $y=a x^{2}+b x+c$. You can verify the following identity yourself:

$$
a x^{2}+b x+c=a\left(x+\frac{b}{2 a}\right)^{2}-\frac{b^{2}-4 a c}{4 a}=a(x-h)^{2}+k, \quad h=\frac{b}{2 a}, \quad k=-\frac{b^{2}-4 a c}{4 a} .
$$

For example: $x^{2}+x=\left(x+\frac{1}{2}\right)^{2}-\frac{1}{4}$
The result will be a parabola obtained by stretching the usual parabola vertically by factor a (if $a<0$, this means flipping it upside down and then stretching by $|a|$) and then moving it so that the vertex will be at point (h, k).

In particular, the branches go up if $a>0$ and down if $a<0$.
Obviously the parabola either intersects $y=0$ at two points or does not intersect it or touches $y=0$ at a single point. Correspondingly the quadratic equation has two roots, no roots or one root respectively. One can easily check that this corresponds to $D>0, D<0$ and $D=0$ respectively, where $D=b^{2}-4 a c$.

Graph of $y=\sqrt{x}$
This graph is similar to the graph of $y=x^{2}$ but it "lies on its side". Notice, that it is not defined for $x<0$.

Homework

1. Find the equation of the line through $(1,2)$ with slope -2 .
2. Find the equation of the line through points $(-1,2)$ and $(2,1)$.
3. Find the intersection point of a line $y=x-3$ and a line $y=-2 x+6$. Sketch the graphs of these lines.
4. Sketch graphs of the following functions:
(a) $x+y=2$
(b) $y=|x-5|+1$
(c) $y=|x+1|+|x-2|$
(d) $y=|x+1|+|x+2|+|x+3|$
(e) $y=-x^{2}+4 x-3$
(f) $|x+y|=2$
(g) $y=\left|x^{2}-x\right|$
(h) $y=\sqrt{x-3}$
