Classwork 1 and Homework 1 Review of Math 6

Math $7 \mathrm{a}$

September 17, 2017

- 1. Expand the following expressions.
 - (a) 2c(x+y)
 - (b) $-3x(2x^2 xy + y^2)$
 - (c) (b 44a)(b + 44a)
 - (d) (3x 2y)(3x + 2y)
 - (e) $(6x^2 1)(x^2 2x 4)$
 - (f) $(a^2 + 2a + 1)(a + 1)$
 - (g) $(a-b)(a+b)(b^2-a^2)$
 - (h) s(s+1)(s-2)(s+3)
- 2. Factorize the following expressions.
 - (a) xa 3xc
 - (b) $a^2 + 4a + 4$
 - (c) $x^3 x$
 - (d) a(b+3) c(b+3)
 - (e) $3a^2 + 9a + 2xa + 6x$
 - (f) $2a^2b + 3ab^2 6bx 4ax$
 - (g) $a^2 11$

(h)
$$x^3 - xy^2$$

(i) $a^4 - b^4$

3. Solve for x. The solution can be a single point, a set of points, an interval, a union of intervals, or an empty set, etc.

- (a) $x^2 4x + 4 = 0$, for $x \in \mathbb{R}$
- (b) $3x^2 12 = 0$, for $x \in \mathbb{R}$
- (c) $x^{2}(x-1)(x^{2}-4) = 0$, for $x \in \mathbb{R}$
- (d) $\frac{x+2}{x-2} = 0$, for $x \in \mathbb{R} \setminus \{2\}$
- (e) |x-3| 2 = 0, for $x \in \mathbb{R}$
- (f) |x-3|+2=0, for $x \in \mathbb{R}$
- (g) |3x-1| = 0, for $x \in \mathbb{R}$
- (h) 2x + 1 > 3, for $x \in \mathbb{R}$
- (i) |2x+1| 3 < 2, for $x \in \mathbb{R}$
- (j) $\frac{x+3}{x} > 0$, for $x \in \mathbb{R} \setminus \{0\}$
- 4. Rationalize the denominator of fraction (multiply by its conjugate).
 - (a)

$$\frac{3}{3-\sqrt{5}}$$

(b)
$$3 - \sqrt{5}$$

(c)
$$\overline{5-\sqrt{3}}$$

$$\frac{1+\pi}{1+\sqrt{2}}$$

(d)

- (a) $(-1)^{4n-1} + (-1)^{2n-4} + (1)^n$, for $n \in \mathbb{N}$ (a non-negative integer)
- (b) $(a+b)^{2c} (2ab+a^2+b^2)^c$, for $a, b, c \in \mathbb{N}^*$ (all 3 positive integers)
- (c) $4^2 + 2^4 (1/2)^{-4} (1/4)^{-2}$
- 6. Sum each of the following sequences.
 - (a) $0, 3, 6, \dots 99$
 - (b) 1, 2, 4, \dots 1024
 - (c) 3, -3, 3, -3...3
 - (d) -2, 4, 10, ... 70
- 7. (a) Assume x_n is a geometric progression where $n \in \mathbb{N}^*$ and $x \in \mathbb{R}$. If $x_{102}/x_{100} = 2$ is true and every pair of consecutive members of the progression have the same sign, what is the constant ratio r of x_n ?
 - (b) Compute the sum of series $9 + 9^2 + 9^3 + \ldots + 9^9$. You may perform addition 8 times, but try to do it in fewer operations.

 $\frac{1}{3-\sqrt{5}}$

- (c) First member of an arithmetic progression given by $a_n = a_1 + (n-1)d$ is 1. If sum of first 8 terms exceeds sum of first 4 terms by 70, i.e. $S_8 S_4 = 70$, what is the common difference d of this progression?
- 8. If A and B are statements that can be either true or false, prove the following using truth tables.
 - (a) A and B is equivalent to $\neg(\neg A \text{ or } \neg B)$
 - (b) $A \iff B$ is equivalent to $\neg A \iff \neg B$
- 9. (a) Which relationship among >, < and = holds between

$$\frac{10^{10}-1}{10^{11}-1}$$
 and $\frac{10^{11}-1}{10^{12}-1}$?

(b) On what interval is the following true?

$$\frac{x-1}{x^2-1} > \frac{x^2-1}{x^3-1}$$

- 10. We throw 10 identical fair dice and observe the resulting numbers. Calculate the probability of each event occuring. All numbers being 6
- (b) At least one of the numbers being 6
- (c) At least one of the numbers among the first 3 dice being 6
- (d) Out of 10 numbers observed, at least 1 even number being present
- (e) What is more likely? i) All numbers being even or ii) at least one number being even?