Classwork 1 and Homework 1
 Review of Math 6

Math 7a

September 17, 2017

1. Expand the following expressions.
(a) $2 c(x+y)$
(b) $-3 x\left(2 x^{2}-x y+y^{2}\right)$
(c) $(b-44 a)(b+44 a)$
(d) $(3 x-2 y)(3 x+2 y)$
(e) $\left(6 x^{2}-1\right)\left(x^{2}-2 x-4\right)$
(f) $\left(a^{2}+2 a+1\right)(a+1)$
(g) $(a-b)(a+b)\left(b^{2}-a^{2}\right)$
(h) $s(s+1)(s-2)(s+3)$
2. Factorize the following expressions.
(a) $x a-3 x c$
(b) $a^{2}+4 a+4$
(c) $x^{3}-x$
(d) $a(b+3)-c(b+3)$
(e) $3 a^{2}+9 a+2 x a+6 x$
(f) $2 a^{2} b+3 a b^{2}-6 b x-4 a x$
(g) $a^{2}-11$
(h) $x^{3}-x y^{2}$
(i) $a^{4}-b^{4}$
3. Solve for x . The solution can be a single point, a set of points, an interval, a union of intervals, or an empty set, etc.
(a) $x^{2}-4 x+4=0$, for $x \in \mathbb{R}$
(b) $3 x^{2}-12=0$, for $x \in \mathbb{R}$
(c) $x^{2}(x-1)\left(x^{2}-4\right)=0$, for $x \in \mathbb{R}$
(d) $\frac{x+2}{x-2}=0$, for $x \in \mathbb{R} \backslash\{2\}$
(e) $|x-3|-2=0$, for $x \in \mathbb{R}$
(f) $|x-3|+2=0$, for $x \in \mathbb{R}$
(g) $|3 x-1|=0$, for $x \in \mathbb{R}$
(h) $2 x+1>3$, for $x \in \mathbb{R}$
(i) $|2 x+1|-3<2$, for $x \in \mathbb{R}$
(j) $\frac{x+3}{x}>0$, for $x \in \mathbb{R} \backslash\{0\}$
4. Rationalize the denominator of fraction (multiply by its conjugate).
(a)

$$
\frac{3}{3-\sqrt{5}}
$$

(b)

$$
\frac{3-\sqrt{5}}{5-\sqrt{3}}
$$

(c)

$$
\frac{1+\pi}{1+\sqrt{2}}
$$

(d)

$$
\frac{3}{3-\sqrt{5}}
$$

5. Compute the following. Simplify your answer if necessary.
(a) $(-1)^{4 n-1}+(-1)^{2 n-4}+(1)^{n}$, for $n \in \mathbb{N}$ (a non-negative integer)
(b) $(a+b)^{2 c}-\left(2 a b+a^{2}+b^{2}\right)^{c}$, for $a, b, c \in \mathbb{N}^{*}$ (all 3 positive integers)
(c) $4^{2}+2^{4}-(1 / 2)^{-4}-(1 / 4)^{-2}$
6. Sum each of the following sequences.
(a) $0,3,6, \ldots 99$
(b) $1,2,4, \ldots 1024$
(c) $3,-3,3,-3 \ldots 3$
(d) $-2,4,10, \ldots 70$
7. (a) Assume x_{n} is a geometric progression where $n \in \mathbb{N}^{*}$ and $x \in \mathbb{R}$. If $x_{102} / x_{100}=2$ is true and every pair of consecutive members of the progression have the same sign, what is the constant ratio r of x_{n} ?
(b) Compute the sum of series $9+9^{2}+9^{3}+\ldots+9^{9}$. You may perform addition 8 times, but try to do it in fewer operations.
(c) First member of an arithmetic progression given by $a_{n}=a_{1}+(n-1) d$ is 1 . If sum of first 8 terms exceeds sum of first 4 terms by 70 , i.e. $S_{8}-S_{4}=70$, what is the common difference d of this progression?
8. If A and B are statements that can be either true or false, prove the following using truth tables.
(a) A and B is equivalent to $\neg(\neg A$ or $\neg B)$
(b) $A \Longleftrightarrow B$ is equivalent to $\neg A \Longleftrightarrow \neg B$
9. (a) Which relationship among $>,<$ and $=$ holds between

$$
\frac{10^{10}-1}{10^{11}-1} \text { and } \frac{10^{11}-1}{10^{12}-1} ?
$$

(b) On what interval is the following true?

$$
\frac{x-1}{x^{2}-1}>\frac{x^{2}-1}{x^{3}-1}
$$

10. We throw 10 identical fair dice and observe the resulting numbers. Calculate the probability of each event occuring. All numbers being 6
(b) At least one of the numbers being 6
(c) At least one of the numbers among the first 3 dice being 6
(d) Out of 10 numbers observed, at least 1 even number being present
(e) What is more likely? i) All numbers being even or ii) at least one number being even?
