Classwork $2+$ Homework 2
 Vectors

Math 7a

September 24, 2017

We all know that any point (A) in a plane can be written down as a pair of numbers or its coordinates: along x axis $\left(A_{x}\right)$ and along y axis $\left(A_{y}\right)$.

We will now learn to use a pair of points in plane: a vector. A vector in 2-dimensional plane is simply a line that has a direction. It is a line segment $(\overrightarrow{A B})$ of a particular length with endpoints $(A$ and $B)$. Specifying coordinates of points $A:\left(A_{x}, A_{y}\right)$ and $B:\left(B_{x}, B_{y}\right)$ tells us exactly what the vector looks like.
Vector $\overrightarrow{A B}$'s coordinates are the difference between coordinates of its head B and tail A :

$$
\overrightarrow{A B}=\left(B_{x}-A_{x}, B_{y}-A_{y}\right)
$$

Length of a vector can be found using Pythagorean theorem. We can draw a right triangle with sides $B_{x}-A_{x}$ and $B_{y}-$ A_{y}. Then length of the hypothenuse will give us the length of vector $\overrightarrow{A B}$. This can be written down as:

$$
|\overrightarrow{A B}|=\sqrt{\left(B_{x}-A_{x}\right)^{2}+\left(B_{y}-A_{y}\right)^{2}}
$$

Midpoint of a vector $\overrightarrow{A B}$ is the point located exactly halfway between the tail and the head of the vector. Midpoint is usually denoted as M and can be found by averaging the coordinates of the vector's endpoints along each axis:

$$
\vec{M}=\left(\frac{1}{2}\left(B_{x}+A_{x}\right), \frac{1}{2}\left(B_{y}+A_{y}\right)\right)
$$

Just like numbers, we can add vectors. The addition of vectors is done by adding the individual components of the vectors. If vectors \vec{u} and \vec{v} are given by $\vec{u}=\left(v_{x}, v_{y}\right)$ and $\vec{u}=\left(u_{x}, u_{y}\right)$, then their addition gives us a vector:

$$
\overrightarrow{u+v}=\left(v_{x}+u_{x}, v_{u}+u_{y}\right)
$$

1. We are given coordinates of 2 points: $A=\left(A_{x}, A_{y}\right)$ and $B=\left(B_{x}, B_{y}\right)$. How can we write down the vector whose endpoints are A and B ?
2. Find the midpoint of a vector given by its endpoints:

(a) $(10,10)$ and $(0,0)$
(b) (x, y) and $(12,10)$
3. If endpoints of a vector are $C=(1,1)$ and $D=(5,6)$, find the following:
(a) coordinate of the midpoint M between C and D
(b) coordinates of points $C+\overrightarrow{C D}, C+2 \overrightarrow{C D}, C-\overrightarrow{C D}$, and $C+\frac{1}{2} \overrightarrow{C D}$.
4. If endpoints of a vector are $C=\left(C_{x}, C_{y}\right)$ and $D=\left(D_{x}, D_{y}\right)$, find coordinates of points $C+\overrightarrow{C D}, C+2 \overrightarrow{C D}, C-\overrightarrow{C D}$, and $C+\frac{1}{2} \overrightarrow{C D}$.
5. 3 points of a parallelogram $A B C D$ are $A=(1,1), B=$ $(2,5)$, and $C=(6,3)$. What is the coordinate of:
(a) 4th point D of the parallelogram (you are free to pick one of several possible 4 th points)
(b) Midpoint of side $\overrightarrow{C D}$
(c) "Center" of the parallelogram?
6. We are given 2 points: $A=(2,2)$ and $B=(10,6)$. We also know that point C divides the line segment $\overrightarrow{A B}$ into segments $\overrightarrow{A C}$ and $\overrightarrow{C B}$, whose lengths have proportion 3 : 1, i.e., $|\overrightarrow{A C}|=3|\overrightarrow{C B}|$. Find the coordinate of point C.
7. We are given 2 points A and B as well as a point C, which splits the segment $\overrightarrow{A B}$ in half. Note that this time, we don't have the coordinates specified. Show that:

$$
\overrightarrow{O C}=\frac{1}{2} \overrightarrow{O A}+\frac{1}{2} \overrightarrow{O B}
$$

8. A triangle $A B C$ with vertices A, B, and C is given.
(a) Calculate $\overrightarrow{A B}+\overrightarrow{B C}+\overrightarrow{C A}$.
(b) Is it true that $\overrightarrow{A B}+\overrightarrow{B C}+\overrightarrow{C A}$ is equal to $\overrightarrow{B A}+\overrightarrow{C B}+\overrightarrow{A C}$?
9. We are given a rectangle $A B C D$ as drawn in figure below. The midpoints of sides $\overrightarrow{B C}$ and $\overrightarrow{C D}$ are M and N, respectively.
(a) Express the vectors $\overrightarrow{B C}$ and $\overrightarrow{D C}$ using only vectors $\overrightarrow{A B}$ and $\overrightarrow{A D}$. (Hint: this is easy.)
(b) Express the vectors $\overrightarrow{A M}$ and $\overrightarrow{A N}$ using only vectors $\overrightarrow{A B}$ and $\overrightarrow{A D}$.
(c) Finally, express the vectors $\overrightarrow{A B}$ and $\overrightarrow{A D}$ using only vectors $\overrightarrow{A M}$ and $\overrightarrow{A N}$.

FIGURE 4: MIDPOINTS OF SIDES

