Homework 11
 Quadratic Polynomial And Basic Parabola

Math 7a

December 13, 2017

The graph of $y=x^{2}$ is referred as the basic parabola, and its general coordinates are $\left(n, n^{2}\right)$.

Vertical translation of a parabola

When we translate the parabola vertically upwards or downwards, the y-value of each point on the basic parabola is increased or decreased, respectively. Thus, for example, translating the parabola upwards/downwards by 4 units, shifts the general point $\left(n, n^{2}\right)$ to $\left(n, n^{2}+4\right)$ or $\left(n, n^{2}-4\right)$, respectively. The equation of this new parabola is thus $y=x^{2} \pm 4$. The vertex of this parabola is now $(0,4)$ or $(0,-4)$, respectively. It still has the same axis of symmetry.

Horizontal translation

When we translate the basic upside-down parabola to the right by 4 units the x -value becomes $n+4$, the equation is $y=-(x-4)^{2}$ such that for the shifted point $n+4$ the y-value stays the same $-((n+4)-4)^{2}=-n^{2}$. The graph of $y=-(x-4)^{2}$ is congruent to the basic parabola, but is translated 4 units to the left. The vertex of this parabola is now $(4,0)$. Its new axis of symmetry is the line $x=4$.

Stretching a parabola

The basic parabola $y=x^{2}$ can have its arms stretched producing a new parabola that is not congruent to the original one. Thus the parabola $y=5 x^{2}$ is obtained from the parabola $y=x^{2}$ by stretching by a factor of 5 from the x-axis, that is, the y-values are increased by factor of 5 .
In general any quadratic polynomial can be written by completing the square:

$$
y=f(x)=a(x-h)^{2}+k
$$

and its turning point is $(x, y)=(h, k)$ or more precisely since

$$
\left(x+\frac{b}{2 a}\right)^{2}=\frac{D}{4 a^{2}}
$$

and its turning point is

$$
(x, y)=\left(-\frac{b}{2 a}, \frac{D}{4 a^{2}}\right)
$$

Problems

1. Let x_{1}, x_{2} be roots of equation $x^{2}+5 x-7=0$. Find:
(a) $x_{1}^{2}+x_{2}^{2}$
(b) $\left(x_{1}-x_{2}\right)^{2}$
(c) $\frac{1}{x_{1}}+\frac{1}{x_{2}}$
(d) $x_{1}^{3}+x_{2}^{3}$
2. Sketch the graphs of the following functions and relations:
(a) $y=x^{2}-3 x$
(b) $y=(x-5)^{2}-10$
(c) $y=(x-3)^{2}-1$
(d) $y=x^{2}-4 x-8$
(e) $y=x^{2}+x-4$
3. Solve the following inequalities and sketch the graph.
(a) $x^{2}-5 x+4<0$
(b) $2 x^{2}+5 x-3>0$
(c) $x^{2}>1+x$
(d) $-x^{2}+2 x-4>0$
4. Of all the rectangles with perimeter 4, which one has the largest area? Hint: if sides of the rectangle are a and b, then the area is $A=a b$, and the perimeter is $2 a+2 b=4$. Thus $b=2-a$, so one can rewrite A using only a.
