Homework 13
 Fibonacci Numbers and the Golden Ratio

Math 7a

January 9, 2018

The Fibonacci sequence is a sequence of integers in which the first and second terms are both equal to 1 and each subsequent term is the sum of the two preceding it. The first few terms are $1,1,2,3,5,8,13,21,34,55, \ldots$. The sequence is described by: $F_{0}=F_{1}=1, F_{2}=F_{0}+F_{1}$, and so on: $F_{n}=F_{n-2}+F_{n-1}$.

1. Show that for any integer n, the following equality is true:

$$
F_{0}+F_{1}+\cdots+F_{n}=F_{n+2}-1
$$

[Hint : $\left.F_{n+2}=F_{n+1}+F_{n}.\right]$
2. Divisibility of Fibonacci numbers
(a) Which Fibonacci numbers are even? Give an explanation. [Hint : track the remainders.]
(b) Which Fibonacci numbers are divisible by 3? Explain why.
3. Let us define some constants:

$$
\begin{gathered}
\Phi=\frac{1+\sqrt{5}}{2} \approx 1.618 \\
\bar{\Phi}=\frac{1-\sqrt{5}}{2} \approx-0.618
\end{gathered}
$$

(a) Show that $\Phi^{2}=\Phi+1$ and $\bar{\Phi}^{2}=\bar{\Phi}+1$ are true.
(b) Show that the geometric progression $a_{1}=1, a_{2}=\Phi, a_{3}=\Phi^{2}, \ldots$ satisfies the exact same rule as the Fibonacci sequence:

$$
a_{n+2}=a_{n+1}+a_{n} \text { or } \Phi^{n+2}=\Phi^{n+1}+\Phi^{n}
$$

[Hint: use previous part.]
4. Find $\operatorname{gcd}\left(F_{n}, F_{n+1}\right)$.
5. Imagine you are tossing a single coin, but many times getting sequences of outcomes. For example we may get $H T T H$, or $T T H T$ if we toss the coin $n=4$ times where H stands for heads and T stands for tails. We discard all sequences where 2 consecutive heads were present as illegal. For example $H T H H$, HHHT and THHT are not allowed if we flipped 4 times. But HTHT and TTTT are legitimate outcomes.
(a) How many different sequences of allowed outcomes can we get if we to do 5 coin-flip experiments?
(b) Calculate how many different sequences of allowed outcomes (no 2 consecutive heads) are possible if we flip the coin 15 times? This should not involve listing all possible sequences of 15 coin-flip outcomes.
[Hint : consider the last (15th) coin-flip. We know something about each case of its outcome.]
(c) Write down the formula for number of legitimate outcomes possible for n coin-flips.

