FACTORISATION: DIFFERENCE OF SQUARES, SUM/DIFFERENCE OF CUBES

1.Common Factor

The simplest type of factoring involves taking out a common factor from two or more terms.

$$
14 x^{3} y-4 x=2 x\left(7 x^{2} y-2\right)
$$

2.Factoring in pairs

In some instances, there may be no common factor of all the terms in a given expression. It may, however, be useful to factor in pairs.

$$
2 a^{3}+3 a b+4 a^{2}+6 b=a\left(2 a^{2}+3 b\right)+2\left(2 a^{2}+3 b\right)=\left(2 a^{2}+3 b\right)(a+2)
$$

There are three special expansions and corresponding factorisations that frequently occur in algebra.

3. Factoring using the difference of squares

An identity is a statement in algebra that is true for all values of the unknowns.
By expanding, it is easy to show that $(x-y)(x+y)=x^{2}-y^{2}$.
Examples:
Factorize

1. $x^{2}(x+4)+5(x+4)$
2. $4 x^{2}+16 x+2 x y+8 y$
3. $x^{2}-2 x-y x+2 y$
4. $100 x^{8} y^{2}-16 x^{4} y^{6}$
5. $x^{4}-y^{4}$
6. $x^{2}-7$
7. Simplify $\frac{4 x^{2}-25 y^{2}}{2 x-5 y}$
8. Rationalize the denominator of $\frac{1}{\sqrt{5}-\sqrt{3}}$
9. Rationalize the denominator of $\frac{x}{x+\sqrt{y}}$

4. Factoring using the perfect squares

The other two basic algebraic identities are:

$$
a^{2}+2 a b+b^{2}=(a+b)^{2} \text { and } a^{2}-2 a b+b^{2}=(a-b)^{2} \text {. }
$$

Factorize

1. $4 x^{2}-12 x y+9 y^{2}$
2. Simplify $\frac{x^{2}+5 x y-11 y^{2}}{x^{2}-16 y^{2}}-\frac{6 x y}{2 x(x-4 y)}$

4. Factoring using the sum/difference of cubes

The difference of squares identity can be generalized to cubes. By expanding the right-hand side, we can show that $a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right)$ and $a^{3}+b^{3}=(a+b)\left(a^{2}-a b+b^{2}\right)$.

Factorize

1. $(x+4)^{3}-9 x-36=$
2. Rationalize the denominator of the fraction $\frac{2}{1+\sqrt[3]{4}}$
3. Rationalize the denominator of the fraction $\frac{2 x}{\sqrt[3]{x}+\sqrt[3]{y}}$
4. Factoring using the sum/difference of powers of an odd $n=2 k+1$
$\frac{a^{n}-b^{n} \text { is a multiple of }(a-b)}{\text { Homework }}$ and $a^{n}+b^{n}$ is a multiple of $(a+b)$.
5. Factorize
(a) $3 x^{3}-x^{2} y+6 x^{2} y-2 x y^{2}+3 x y^{2}-y^{3}$
(b) $a^{2}-b^{2}-10 b-25$
(c) $x^{4}+4$
(d) $x^{4}+64$
(e) $64-a^{8} b^{8}$
(f) $a^{4}-100$
(g) $\frac{1}{9} x^{2}-25$
(h) $a^{9}-27$
(i) $(x-2)^{2}-(y+3)^{2}$
(j) $4 x^{2}+8 x y+4 y^{2}$
(k) $4 x^{2}+12 x y+9 y^{2}$
(l) $(x-2)^{2}-10(x-1)+25$
(m) $t^{3}-t^{2}+t-1$
(n) $t^{3}-t^{2}-t+1$
(o) Rationalize the denominator of $\frac{4}{\sqrt{2}+\sqrt{5}}$
(p) Rationalize the denominator of $\frac{x^{2} y}{x-\sqrt{y}}$
(q) Rationalize the denominator of the fraction $\frac{1}{a-\sqrt[3]{b}}$
6. The real numbers x and y satisfy the equation $x^{2}+y^{2}=10 x-6 y-34$. What is $x+y$?
3.* The number $\left(2^{48}-1\right)$ is exactly divisible by two numbers between 60 and 70 . Find the numbers.
7. Is the number

$$
x=2222^{5555}+5555^{2222}=\left(2222^{5}\right)^{1111}+\left(5555^{2}\right)^{1111}
$$

divisible by 7 ?
5. Use the difference of squares and difference/sum of cubes to find the greatest power of 2 that is a factor $10^{1002}-4^{501}$

