_QUADRATICS IN DISGUISE. VIETA FORMULAS

Definition $a \in \mathbb{R}$ is a real **root** of a polynomial function p(x) if p(a) = 0.

Definition x - a is a **factor** of a polynomial function p(x) if we can write $p(x) = q(x) \cdot (x - a)$ for some non-zero polynomial q(x) with a degree deg(q(x)) = deg(p(x)) - 1.

Theorem (The Factor Th.) (x-a) is a factor of the polynomial (function) p(x) if and only if x = a is a root of p(x).

From the Factor Theorem, if x_1 and x_2 are roots of the second degree polynomial function $f(x) = ax^2 + bx + c$, then $f(x) = a(x - x_1)(x - x_2) = a(x^2 - x_1x - x_2x + x_1x_2) = a(x^2 - (x_1 + x_2)x + x_1x_2)$. By definition, two polynomials are equal if and only if all their corresponding coefficients are equal. Thus:

Vieta formulas:

if a = 1, then

$$S = x_1 + x_2 = -b$$
 and $P = x_1 x_2 = c$

if $a \neq 1$, then

$$S = x_1 + x_2 = -\frac{b}{a}$$
 and $P = x_1 x_2 = \frac{c}{a}$

The Vieta formulas can be used to guess factors and find integer and rational roots.

Example 1. (Review) If α and β are the roots of the quadratic $x^2 - 4x + 9 = 0$, what are the values of 1. α, β

2. $\alpha + \beta$ 2. $\alpha\beta$ 3. $\alpha^2 + \beta^2$? Sol:

1. Very often one cannot find α, β using Vieta relationships. When does it apply: if there is combination of integer factors of the product P = 9 having the sum S = 4. If this is not the case simply state it and try to complete to a square or directly use the discriminant formula.

2. From Vieta's formula, we have $\alpha + \beta = 4$.

3. From Vieta's formula, we have $\alpha\beta = 9$.

4. Vieta's formula does not give the value of $\alpha^2 + \beta^2$ directly. What we need to do is to write $\alpha^2 + \beta^2$ in terms of $\alpha + \beta$ and/or $\alpha\beta$, and we can then substitute these values in. We have

$$\alpha^{2} + \beta^{2} = (\alpha + \beta)^{2} - 2\alpha\beta$$
$$= 4^{2} - 2 \times 9$$
$$= -2. \Box$$

Example 2.(Review) Which are the roots of the quadratic $x^2 + 5x + 6$? Sol: Let p, q the roots. Using Vieta's formula we have

$$\begin{array}{l} p+q=-5\\ pq=6. \end{array}$$

and we can easily see -2 - 3 = -5 and $(-2) \times (-3) = 6$. So the roots are -2 and -3Example 3. Find a quadratic equation whose roots are 11 and -7. Is it unique? Why or why not? Sol: Let the quadratic be $x^2 + bx + c$, where we wish to find b, c.Vieta's formula tells us that

$$b = -(11 + (-7)) = -4$$

$$c = 11 \times (-7) = -77$$

Therefore the desired quadratic equation is $x^2 - 4x - 77 = 0$. It is not unique. Think of multiplying it.

General formulas for the sum and product of roots

Vieta's formulas give a relationship between the roots of any polynomial and its coefficients, and yes they can be generalized for higher order polynomials. We are going to prove and use it for n=3, n=4 Let $p(x) = a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + ... + a_1 x^1 + a_0$ a polynomial of degree n, with roots $r_1, r_2, r_3, ..., r_n$

Let $p(x) = a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + ... + a_1 x^1 + a_0$ a polynomial of degree *n*, with roots $r_1, r_2, r_3, ..., r_n$ Then:

$$s_{1} = r_{1} + r_{2} + r_{3} + \dots + r_{n} = -\frac{-n-1}{a_{n}}$$

$$s_{2} = r_{1}r_{2} + r_{1}r_{3} + r_{1}r_{4} + \dots + r_{n-1}r_{n-2} = \frac{a_{n-2}}{a_{n}}$$

$$\dots$$

$$s_{n} = r_{1}r_{2}r_{3}r_{4}\dots r_{n} = (-1)^{n}\frac{a_{0}}{a_{n}}$$

Homework

1. Factorize the following quadratics in disguise:

(a) $x^8 + 2x^4 - 4$ (b) $x^6 + 5x^3 + 6$ (c) $x^4 + 2x^2 - 8$ (d) $x + 7\sqrt{x} + 6$ (e) $\frac{1}{x^2} - 7\frac{1}{x} + 10$ (f) $\frac{1}{x^4} - 7\frac{1}{x^2} + 10$ (g) $x^{\frac{2}{5}} + 3x^{\frac{1}{5}} + 2$ (h) $x^{\frac{2}{3}} - 9x^{\frac{1}{3}} + 8$ (i) $(x + 1)^2 - 7x - 7 + 12$

2. Find the solutions of the following polynomial equations(use factoring):

(a) $2x^3 - x^2 = 8x - 4$ (b) $x^3 + 5x^2 = 4x + 20$ (c) $8x^3 + 4x^2 = 18x + 9$ (d) $x^4 + 4x^3 + 4x^2 = -16x^2$

3. Let r and t be the roots of the quadratic equation $16x^2 - 5x + 1 = 0$. Find:

(a)
$$r+t$$
 (b) r^2+t^2 (c) $1/r+1/t$ (d) r^3+t^3 (e) r^3-t^3

- 4. Solve in real numbers the system of equations : x + y = 2 and xy = -2.
- 5. What is the average of the values of x that satisfy the equation $x^2 + 432x + 169 = 0$?
- 6.* If a and b are the roots of the equation $x^2 5x + 6$, then what is the value of $(\sqrt{a} + \sqrt{b})(\sqrt{a} + \sqrt{b})$?
- 7.* Let x and y two distinct real numbers such that $x^2 + 3x + 1 = 0$ and $y^2 + 3y + 1 = 0$. Find x + y and $\frac{x}{y} + \frac{y}{x}$.
- 8.* Let x_1, x_2 the solutions of the equation $3x^2 + 5x 6 = 0$. Without solving the equation, make a quadratic equation with solutions $y_1 = x_1 + \frac{1}{x_2}$ and $y_2 = x_2 + \frac{1}{x_1}$
- 9.* Let $x^2 + 8x + k = 0$. Find k such that the sum of solutions of the given equation is ten times the positive difference its solutions.
- 10.* Prove the Vieta relations for n=3 and n=4.

[Optional Exercises for Mathematical Competitions]

- 11.* Let x_1, x_2, x_3 be the roots of equation $x^3 x 1 = 0$. Compute $\frac{2015 + x_1}{2015 x_1} + \frac{2015 + x_2}{2015 x_2} + \frac{2015 + x_3}{2015 x_3}$ Hint: $\frac{2015 + x}{2015 - x} = \frac{4030}{2015 - x} - 1$
- 12.* Let $g(x) = x^2 + bx + 4000$. One of the x-intercepts of g(x) is four times another. What is b?
- 13.** Let $g(x) = x^3 + cx + 2500$. One of the *x*-intercepts of g(x) is four times another. What is *c*? 14. Find the sum of the roots of $z^{20} - 19z + 2$.
- 15.* Find the sum of the 20th powers of the roots of $z^{20} 19z + 2$.