Definition $a \in \mathbb{R}$ is a real root of a polynomial function $p(x)$ if $p(a)=0$.

Definition $x-a$ is a factor of a polynomial function $p(x)$ if we can write $p(x)=q(x) \cdot(x-a)$ for some non-zero polynomial $q(x)$ with a degree $\operatorname{deg}(q(x))=\operatorname{deg}(p(x))-1$.

Theorem (The Factor Th.) $(x-a)$ is a factor of the polynomial (function) $p(x)$ if and only if $x=a$ is a root of $p(x)$.

From the Factor Theorem, if x_{1} and x_{2} are roots of the second degree polynomial function $f(x)=a x^{2}+b x+c$, then $f(x)=a\left(x-x_{1}\right)\left(x-x_{2}\right)=a\left(x^{2}-x_{1} x-x_{2} x+x_{1} x_{2}\right)=a\left(x^{2}-\left(x_{1}+x_{2}\right) x+x_{1} x_{2}\right)$. By definition, two polynomials are equal if and only if all their corresponding coefficients are equal. Thus:

Vieta formulas:

if $a=1$, then

$$
S=x_{1}+x_{2}=-b \text { and } P=x_{1} x_{2}=c
$$

if $a \neq 1$, then

$$
S=x_{1}+x_{2}=-\frac{b}{a} \text { and } P=x_{1} x_{2}=\frac{c}{a}
$$

The Vieta formulas can be used to guess factors and find integer and rational roots.
Example 1. (Review) If α and β are the roots of the quadratic $x^{2}-4 x+9=0$, what are the values of

1. α, β
2. $\alpha+\beta$
3. $\alpha \beta$
4. $\alpha^{2}+\beta^{2}$?

Sol:

1. Very often one cannot find α, β using Vieta relationships. When does it apply: if there is combination of integer factors of the product $P=9$ having the sum $S=4$. If this is not the case simply state it and try to complete to a square or directly use the discriminant formula.
2. From Vieta's formula, we have $\alpha+\beta=4$.
3. From Vieta's formula, we have $\alpha \beta=9$.
4. Vieta's formula does not give the value of $\alpha^{2}+\beta^{2}$ directly. What we need to do is to write $\alpha^{2}+\beta^{2}$ in terms of $\alpha+\beta$ and/or $\alpha \beta$, and we can then substitute these values in. We have

$$
\begin{aligned}
\alpha^{2}+\beta^{2} & =(\alpha+\beta)^{2}-2 \alpha \beta \\
& =4^{2}-2 \times 9 \\
& =-2 .
\end{aligned}
$$

Example 2.(Review) Which are the roots of the quadratic $x^{2}+5 x+6$?
Sol: Let p, q the roots. Using Vieta's formula we have

$$
\begin{aligned}
& p+q=-5 \\
& p q=6 .
\end{aligned}
$$

and we can easily see $-2-3=-5$ and $(-2) \times(-3)=6$. So the roots are -2 and -3
Example 3. Find a quadratic equation whose roots are 11 and -7 . Is it unique? Why or why not?
Sol: Let the quadratic be $x^{2}+b x+c$, where we wish to find b, c.Vieta's formula tells us that

$$
\begin{aligned}
& b=-(11+(-7))=-4 \\
& c=11 \times(-7)=-77
\end{aligned}
$$

Therefore the desired quadratic equation is $x^{2}-4 x-77=0$. It is not unique. Think of multiplying it.

General formulas for the sum and product of roots

Vieta's formulas give a relationship between the roots of any polynomial and its coefficients, and yes they can be generalized for higher order polynomials. We are going to prove and use it for $\mathrm{n}=3, \mathrm{n}=4$
Let $p(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+a_{n-2} x^{n-2}+\ldots+a_{1} x^{1}+a_{0}$ a polynomial of degree n, with roots $r_{1}, r_{2}, r_{3}, \ldots, r_{n}$ Then:

$$
\begin{aligned}
& s_{1}=r_{1}+r_{2}+r_{3}+\ldots+r_{n}=-\frac{a_{n-1}}{a_{n}} \\
& s_{2}=r_{1} r_{2}+r_{1} r_{3}+r_{1} r_{4}+\ldots+r_{n-1} r_{n-2}=\frac{a_{n-2}}{a_{n}} \\
& \ldots \ldots \\
& s_{n}=r_{1} r_{2} r_{3} r_{4} \ldots r_{n}=(-1)^{n} \frac{a_{0}}{a_{n}}
\end{aligned}
$$

Homework

1. Factorize the following quadratics in disguise:
(a) $x^{8}+2 x^{4}-4$
(d) $x+7 \sqrt{x}+6$
(g) $x^{\frac{2}{5}}+3 x^{\frac{1}{5}}+2$
(j) $(x+5)^{4}+7(x+5)^{2}-6$
(b) $x^{6}+5 x^{3}+6$
(e) $\frac{1}{x^{2}}-7 \frac{1}{x}+10$
(h) $x^{\frac{2}{3}}-9 x^{\frac{1}{3}}+8$
(c) $x^{4}+2 x^{2}-8$
(f) $\frac{1}{x^{4}}-7 \frac{1}{x^{2}}+10$
(i) $(x+1)^{2}-7 x-7+12$
2. Find the solutions of the following polynomial equations(use factoring):
(a) $2 x^{3}-x^{2}=8 x-4$
(b) $x^{3}+5 x^{2}=4 x+20$
(c) $8 x^{3}+4 x^{2}=18 x+9$
(d) $x^{4}+4 x^{3}+4 x^{2}=-16 x$
3. Let r and t be the roots of the quadratic equation $16 x^{2}-5 x+1=0$. Find:
(a) $r+t$
(b) $r^{2}+t^{2}$
(c) $1 / r+1 / t$
(d) $r^{3}+t^{3}$
(e) $r^{3}-t^{3}$
4. Solve in real numbers the system of equations : $x+y=2$ and $x y=-2$.
5. What is the average of the values of x that satisfy the equation $x^{2}+432 x+169=0$?
6. If a and b are the roots of the equation $x^{2}-5 x+6$, then what is the value of $(\sqrt{a}+\sqrt{b})(\sqrt{a}+\sqrt{b})$?
7.* Let x and y two distinct real numbers such that $x^{2}+3 x+1=0$ and $y^{2}+3 y+1=0$. Find $x+y$ and $\frac{x}{y}+\frac{y}{x}$.
8.* Let x_{1}, x_{2} the solutions of the equation $3 x^{2}+5 x-6=0$. Without solving the equation, make a quadratic equation with solutions $y_{1}=x_{1}+\frac{1}{x_{2}}$ and $y_{2}=x_{2}+\frac{1}{x_{1}}$
9.* Let $x^{2}+8 x+k=0$. Find k such that the sum of solutions of the given equation is ten times the positive difference its solutions.
10.* Prove the Vieta relations for $\mathrm{n}=3$ and $\mathrm{n}=4$.
[Optional Exercises for Mathematical Competitions]

11* Let x_{1}, x_{2}, x_{3} be the roots of equation $x^{3}-x-1=0$. Compute $\frac{2015+x_{1}}{2015-x_{1}}+\frac{2015+x_{2}}{2015-x_{2}}+\frac{2015+x_{3}}{2015-x_{3}}$ Hint: $\frac{2015+x}{2015-x}=\frac{4030}{2015-x}-1$
12.* Let $g(x)=x^{2}+b x+4000$. One of the x-intercepts of $g(x)$ is four times another. What is b ?
13.** Let $g(x)=x^{3}+c x+2500$. One of the x-intercepts of $g(x)$ is four times another. What is c ? 14. Find the sum of the roots of $z^{20}-19 z+2$.
15.* Find the sum of the 20 th powers of the roots of $z^{20}-19 z+2$.

