AM-GM INEQUALITY

The arithmetic mean-geometric mean inequality, or the AM-GM inequality, is one of the most well-known and powerful inequalities. In words, the AM-GM inequality thate states, the arithmetic mean of two non-negative numbers is at least as large as their geometric mean. Moreover, equality holds precisely when we have $\mathrm{a}=\mathrm{b}$.

Thus, the AM-GM inequality is:

$$
\frac{a+b}{2} \geq \sqrt{a b}, \text { for the real numbers } a, b \geq 0
$$

Why? Since both sides are positive, we can square then rearrange; this yields

$$
(a-b)^{2} \geq 0
$$

Note the importance of the "non-negative". Otherwise, if one of the numbers can be negative, and then we could be taking a square root of a negative number. Such an square root is undefined in real numbers, and we would prefer to avoid this situation.

The old question is : does it hold for n ? Yes it can be generalized for n non-negative numbers, but the proof is based on mathematical induction, which is a tool that you will study later.

AM-GM for n :

$$
\frac{a_{1}+a_{2}+\cdots+a_{n-1}+a_{n}}{n} \geq \sqrt[n]{a_{1} a_{2} \cdots a_{n-1} a_{n}}, \text { for the real numbers } a_{1}, \cdots a_{n} \geq 0
$$

The equality holds precisely when we have $a_{1}=\cdots=a_{n}$.

Example 1. If the average of two positive real numbers is 3 , find the maximum value of their product.
Sol: Using AM-GM we have:

$$
\frac{a_{1}+a_{2}+a_{3}+a_{4}+a_{5}}{5} \geq \sqrt[5]{a_{1} a_{2} a_{3} a_{4} a_{5}}
$$

But $3=\frac{a_{1}+a_{2}+a_{3}+a_{4}+a_{5}}{5}$, so $\sqrt[5]{a_{1} a_{2} a_{3} a_{4} a_{5}} \leq 3$. Thus, $a_{1} a_{2} a_{3} a_{4} a_{5} \leq 3^{5}$
Example 2. If $x, y \in \mathbb{R}^{+}$and $x+y=8$, then find the minimum value of $\left(1+\frac{1}{x}\right)\left(1+\frac{1}{y}\right)$.
Sol:The expression can be rewritten as

$$
\left(1+\frac{1}{x}\right)\left(1+\frac{1}{y}\right)=\frac{1+x+y+x y}{x y}=\frac{9+x y}{x y}=\frac{9}{x y}+1 .
$$

From AM-GM

$$
\frac{x+y}{2} \geq \sqrt{x y} \Leftrightarrow 4 \geq \sqrt{x y} \Leftrightarrow 16 \geq x y \Leftrightarrow \frac{1}{16} \leq \frac{1}{x y} \Leftrightarrow \frac{9}{x y}+1 \geq \frac{25}{16} .
$$

Therefore, the minimum value of $\left(1+\frac{1}{x}\right)\left(1+\frac{1}{y}\right)$ is $\frac{25}{16}$. The equality holds true when $x=y=4$.

Homework

1. For $a, b>0$ prove that $\frac{a^{2}}{b^{2}}+\frac{b^{2}}{a^{2}} \geq 2$
2. If a and b are the roots of the equation $x^{2}-5 x+6$, then what is the value of $(\sqrt{a}+\sqrt{b})(\sqrt{a}+\sqrt{b})$?
3. Let x and y two distinct real numbers such that

$$
\begin{aligned}
& x^{2}+3 x+1=0 \\
& y^{2}+3 y+1=0
\end{aligned}
$$

Find $x+y$ and $\frac{x}{y}+\frac{y}{x}$.
4. If the perimeter of a rectangle is 17 , than what is the greatest possible area?
5. A school wants to fence its rectangular yard of 10,000 square feet. On one side the fence is near a road and the fence costs 2 per foot, while the fence for the other three sides costs 1 per foot. How much of each type of fence will he have to buy in order to keep costs minimal? What is the minimum cost? Hint: Use AM-GM to minimize the cost function
[Optional Exercises for Mathematical Competitions]
6. Prove that $(a+b)\left(\frac{1}{a}+\frac{1}{b}\right) \geq 2^{2}$, for a,b positive real numbers.
7.* Let x_{1}, x_{2}, x_{3} be the roots of equation $x^{3}-x-1=0$. Compute $\frac{2015+x_{1}}{2015-x_{1}}+\frac{2015+x_{2}}{2015-x_{2}}+\frac{2015+x_{3}}{2015-x_{3}}$

Hint: $\frac{2015+x}{2015-x}=\frac{4030}{2015-x}-1$
8. Prove that $\frac{x^{3}+y^{3}+z^{3}}{3} \geq x y z$, for $\mathrm{x}, \mathrm{y}, \mathrm{z}$ positive real numbers
9.* Find the minimum value of $\frac{(x-w)(x-y)}{(x-z)(x-t)}+\frac{(x-z)(x-t)}{(x-w)(x-y)}$.
10.* Show that $(x+y)(y+z)(z+x) \geq 8 x y z$ for $x, y, z \geq 0$
11.* If x is a positive real number, find the minimum of $x+\frac{1}{x^{2}}$
12.* Prove that $3 x^{3}-6 x^{2}+\frac{32}{9} \geq 0$. if $x \geq 0$.

Hint: In general if you are trying to use AM-GM, the average of the powers on the LHS should equal the power on the RHS, so try to think on how to split terms.

