MATH 7
ASSIGNMENT 6: VECTORS: CENTER OF GRAVITY

Application: center of gravity

For a collection of points A_{1}, \ldots, A_{n} and positive numbers m_{1}, \ldots, m_{n} (masses placed at these points), we define the center of gravity of this collection of points to be a point M such that

$$
\overrightarrow{O M}=\frac{m_{1} \overrightarrow{O A}_{1}+\cdots+m_{n} \overrightarrow{O A}_{n}}{m_{1}+m_{2}+\cdots+m_{n}}
$$

It can be shown that this definition does not depend on the choice of point O : if we choose another point O^{\prime} and define M^{\prime} so that $\overrightarrow{O^{\prime} M^{\prime}}=\frac{m_{1} \overrightarrow{O^{\prime} A_{1}}+\cdots+m_{n} \widehat{O^{\prime} \vec{A}_{n}}}{m_{1}+m_{2}+\cdots+m_{n}}$ then in fact $M=M^{\prime}$.

Examples:

- Center of gravity of two points A, B with equal mass at them is the midpoint of the interval $A B$.
- Center of gravity of the four vertices of the parallelogram is the intersection point of its diagonals.

Problems

1. (a) Let masses $m_{1}=3, m_{2}=1$ be placed at points $A_{1}=(3,6), A_{2}=(11,2)$. Find the center of gravity of these two masses. Does it lie on the segment $A_{1} A_{2}$? in what proportion does it divide it?
(b) Consider the center of gravity M of a system of two masses m_{1}, m_{2} at points A_{1}, A_{2}. Prove that then $\overrightarrow{A_{1} M}=\frac{m_{2}}{m_{1}+m_{2}} \overrightarrow{A_{1} A_{2}}$. Can you write a similar formula for $\overrightarrow{M A}_{2}$?
(c) Prove that the center of gravity M of a system of two masses m_{1}, m_{2} at points A_{1}, A_{2} lies on the segment $A_{1} A_{2}$ and divides it in proportion $m_{2}: m_{1}$.
2. (a) Let M the center of gravity of three points A, B, C with unit mass at each of them. Prove that then

$$
\overrightarrow{O M}=\frac{1}{3} \overrightarrow{O A}+\frac{2}{3} \overrightarrow{O A}_{1}
$$

where A_{1} is the midpoint of $B C$.
(b) Prove that all three medians of a triangle intersect at a single point M which divides each of them in proportion 2:1
*3. Consider a triangle $\triangle A B C$ and let
(a) A_{1} be the point on side $B C$ which divides it in proportion $2: 3$,
(b) B_{1} be the point on side $C A$ which divides it in proportion $3: 4$,
(c) C_{1} be the point on side $A B$ which divides it in proportion $2: 1$

Prove that the lines $A A_{1}, B B_{1}, C C_{1}$ all intersect at a single point. [Hint: this point would be the center of gravity of appropriately chosen 3 masses at points A, B, C.]

