MATH 7: ALGEBRAIC EXPRESSIONS AND ROOTS

MATERIAL COVERED TODAY

Today we discussed how one works with algebraic expressions, i.e. expressions containing variables, such as 2(x + 1) - 3. In particular, we discussed the following useful formulas:

1.
$$(ab)^n = a^n b^n$$

2. $\sqrt{ab} = \sqrt{a}\sqrt{b}$
3. $(a+b)^2 = a^2 + 2ab + b^2$
4. $(a-b)^2 = a^2 - 2ab + b^2$
5. $a^2 - b^2 = (a-b)(a+b)$

Replacing in the last equality *a* by \sqrt{a} , *b* by \sqrt{b} , we get

$$(\sqrt{a} - \sqrt{b})(\sqrt{a} + \sqrt{b}) = a - b$$

which is very helpful in simplifying expressions with roots, for example:

$$\frac{1}{\sqrt{2}+1} = \frac{1}{\sqrt{2}+1} \times \frac{\sqrt{2}-1}{\sqrt{2}-1} = \frac{\sqrt{2}-1}{2-1} = \sqrt{2}-1$$

We also discussed solving simple equations: linear equation (i.e., equation of the form ax + b = 0, with a, b some numbers, and x the unknown) and equation where the left hand side is factored as product of linear factors, such as (x - 2)(x + 3) = 0.

Homework

1. Without a calculator, compute

$199999 \cdot 200001$

Is there a shorter way of doing it than the straightforward multiplication?

2. Simplify the following expressions, writing them in the form $\frac{f}{g}$, where f, g are polynomials.

(a)
$$\frac{1}{x+1} - \frac{1}{x-1}$$
 (b) $\left(1 + \frac{1}{x}\right) \div (x+1)$ (c) $\left(1 + \frac{1}{x}\right) \div \left(1 - \frac{1}{x}\right)$

3. Factor (i.e., write as a product) the following expressions:

(a)
$$3x^3 - x^2y + 6x^2y - 2xy^2 + 3xy^2 - y^3$$

(b) $a^2 - b^2 - 10b - 25$
(c) $x^2 + 4$
(d) $64 - a^8b^8$
(e) $\frac{1}{9}x^2 - 25$
(f) $a^9 - 27$
(g) $(x - 2)^2 - (y + 3)^2$
(h) $4x^2 + 8xy + 4y^2$
(i) $(x - 2)^2 - 10(x - 1) + 25$
(j) $a^2 + 4ab + 4b^2$
(k) $a^2 - 2a + 1$
(l) $a^4 - b^4$ [Hint: $a^4 = (a^2)^2$.]
(m) $x^2 - 7$ [Hint: $7 = (\sqrt{7})^2$.]

4. Write each of the following expressions in the form $a + b\sqrt{3}$, with rational a, b:

(c)
$$\frac{1}{1-2\sqrt{3}}$$
 (a) $(1+\sqrt{3})^2$ (b) $(1+\sqrt{3})^3$ (c) $\frac{1}{1-2\sqrt{3}}$ (c) $\frac{1}{1-\sqrt{3}}$ (c) $\frac{1+2\sqrt{3}}{\sqrt{3}}$

- 5. Solve the equation $(x-1)^2 = 6$.
- 6. Solve the following equations. Carefully write all the steps in your argument. Please do not use calculators.

(a)
$$(x^2 - 1)(x + 2) = 0$$

(b) $\frac{x+2}{x+3} = 2$
(c) $5(x+1) = 3x+2$
(d) $(x-3)(x+4) = 0$
(e) $\frac{x^2-4}{x+1} = x-2$
(f) $x^2 + 4x = 0$
(g) $x^3 + 4x = 0$