MATH 7, ASSIGNMENT 18: SNAKE METHOD

Today we were talking about equations, including the ones with absolute values, and the snake method for solving inequalities. A few sample problems are given below.

1. Solve equation $|3 x-5|=10$

Solution: To solve this equation we need to consider two cases, the one when $3 x-5 \geq 0$ and the one when $3 x-5<0$.
Case 1. $3 x-5>0$. In this case, $|3 x-5|=3 x-5$, and the equation can be rewritten as

$$
3 x-5=10 .
$$

We can easily solve this equation, getting $x=5$. Substituting this value to the equation, we can see that it satisfies it.
Case 2. $3 x-5<0$. In this case, $|3 x-5|=-(3 x-5)=-3 x+5$, and the equation can be rewritten as

$$
-3 x+5=10 .
$$

We can easily solve this equation, getting $x=-\frac{5}{3}$. Substituting this value to the equation, we can see that it satisfies it.

Therefore, there are two solutions to the equation: $x=5,-\frac{5}{3}$.
2. Solve inequality $|x-4|<7$.

Solution: Again, as before, we need to consider two cases, the one when $x-4 \geq 0$ and the one when $x-4<0$.
Case 1. $x-4 \geq 0$ means that $x \geq 4$. Now, since $x-4 \geq 0$, we have $|x-4|=x-4$, and the inequality can be rewritten as

$$
x-4<7
$$

Solving this inequality gives us $x<11$. But remember, x must be greater than or equal to 4 ! So, combining both things together, we get $4 \leq x<11$, or $x \in[4 ; 11)$.
Case 2. $x-4<0$ means that $x<4$. Now, since $x-4<0$, we have $|x-4|=-(x-4)=4-x$, and the inequality can be rewritten as

$$
4-x<7
$$

Solving this inequality gives us $x>-3$. But remember, x must also be less than 4 ! So, combining both things together, we get $-3<x \leq 4$.

Combining Cases 1 and 2 together, we get the final solution to the inequality: $-3<x<11$ or

$$
x \in(-3,11)
$$

3. Solve the inequality $(x+1)(x-2)^{2}(x-4)^{3} \leq 0$.

Solution: Notice that if we solve the corresponding equation $(x+1)(x-2)^{2}(x-4)^{3}=0$, we get $x=$ $-1,2,4$. Therefore, we need to consider the following 4 intervals: $(-\infty ;-1),(-1 ; 2),(2 ; 4),(4 ; \infty)$.

Notice that in the 1st interval, the expression $(x+1)(x-2)^{2}(x-4)^{3}$ is negative, and therefore satisfies the inequality.

Then, as x "crosses" point 1 , the expression changes its sign to ' + ', and therefore the interval $(-1 ; 2)$ does not satisfy the inequality.

Now, crossing point 2 again won't change the sign of the expression, because $(x-2)^{2}$ is always positive. Therefore, the interval $(2 ; 4)$ also doesn't satisfy the inequality.

Finally, crossing point 4 , the expression changes its sign to ' - ', and therefore the interval $(4 ; \infty)$ satisfies the inequality. So, the answer to the inequality is:

$$
x \in(-\infty ;-1] \cup 2 \cup[4 ; \infty)
$$

The method used to solve this problem is called a "snake method."

Homework

1. Solve the following equations.
(a) $|x-3|=5$
(b) $|2 x-1|=7$
(c) $\left|x^{2}-5\right|=4$
2. Solve the following equations.
(a) $\frac{(x+1)}{(x-1)}=3$
(b) $\frac{\left(x^{2}-9\right)}{(x+1)}=(x+3)$
(c) $x-\frac{3}{x}=\frac{5}{x}-x$
3. Solve the following inequalities, show solution on the real line, write the answer in the interval notation.
(a) $|x-2|>3$
(b) $|x-1|>x+3$
(c) $\frac{(x-2)}{(x+3)} \leq 3$
4. Solve the following inequalities, using the snake method. Show solution on the real line. Write the answer in the interval notation.
(a) $(x-1)(x+2)>0$
(b) $(x+3)(x-2)^{2} \leq 0$
(c) $x(x-1)(x+2) \geq 0$
(d) $x^{2}(x+1)^{5}(x+2)^{3}>0$
*5. Solve the following inequalities, using the snake method. Show solution on the real line. Write the answer in the interval notation.
(a) $\left|x^{2}-x\right| \geq 2 x$
(b) $\frac{x(x-1)^{2}}{(x+1)^{2}} \geq 0$
