MATH 7

ASSIGNMENT 20: QUADRATIC EQUATION SUMMARY

Quadratic equations: summary

Recall from last time

- A quadratic polynomial is expression of the form $p(x)=a x^{2}+b x+c$.
- Roots of quadratic polynomial are numbers such that $p(x)=0$. If x_{1}, x_{2} are roots, then $p(x)=$ $a\left(x-x_{1}\right)\left(x-x_{2}\right)$.
- Vieta formulas: if x_{1}, x_{2} are roots of $x^{2}+b x+c$, then

$$
\begin{aligned}
x_{1}+x_{2} & =-b \\
x_{1} x_{2} & =c
\end{aligned}
$$

- Completing the square: we can rewrite

$$
\begin{equation*}
a x^{2}+b x+c=a\left(x+\frac{b}{2 a}\right)^{2}-\frac{D}{4 a}=a\left(\left(x+\frac{b}{2 a}\right)^{2}-\frac{D}{4 a^{2}}\right) \tag{1}
\end{equation*}
$$

where $D=b^{2}-4 a c$.
From this, one gets the quadratic formula: if $D<0$, there are no roots; if $D \geq 0$, then the roots are

$$
x_{1}, x_{2}=\frac{-b \pm \sqrt{D}}{2 a}
$$

Graphs
From formula (1), we see that:

- If $a>0$, then the smallest possible value of $p(x)$ is $-\frac{D}{4 a}$, which happens when $x=-\frac{b}{2 a}$. In this case the graph is a parabola with branches going up.
- If $a<0$, then the largest possible value of $p(x)$ is $-\frac{D}{4 a}$, which happens when $x=-\frac{b}{2 a}$. In this case the graph is a parabola with branches going down.

Inequalities
To solve inequality of the form $a x^{2}+b x+c>0$: first, find the roots. Then,

- if $a>0, p(x)>0$ for $x<x_{1}$ and for $x>x_{2}$, and $p(x)<0$ between the roots
- if $a<0, p(x)<0$ for $x<x_{1}$ and for $x>x_{2}$, and $p(x)>0$ between the roots

Homework

1. For what values of a does the polynomial $x^{2}+a x+14$ has no roots? exactly one root? two roots?
2. Solve the following equations and inequalities. For each polynomial, also sketch the graph.
(a) $x^{2}-5 x+4<0$
(b) $2 x^{2}+5 x-3>0$
(c) $x^{2}>1+x$
(d) $-x^{2}+2 x-4>0$
(e) $x^{2}-x+6 \geq 0$
3. Let x_{1}, x_{2} be roots of equation $x^{2}+3 x+4=0$. Find
(a) $x_{1}^{2}+x_{2}^{2}$
(b) $\frac{1}{x_{1}^{2}}+\frac{1}{x_{2}^{2}}$
4. Of all the rectangles with perimeter 4 , which one has the largest area? [Hint: if sides of the rectangle are a and b, then the area is $A=a b$, and the perimeter is is $2 a+2 b=4$. Thus, $b=2-a$, so one can write A using only $a \ldots$...]
5. Prove that for any point P on the parabola $y=\frac{x^{2}}{4}+1$, the distance from P to the x-axis is equal to the distance from P to the point $(0,2)$.
6. This question is about making sense of the following (infinite) expression

(a) Compute the first several approximations (write the fractions in simplest form):

$$
\frac{1}{1+1} ; \quad \frac{1}{1+\frac{1}{1+1}} ; \quad \frac{1}{1+\frac{1}{1+\frac{1}{1+1}}}
$$

Can you guess the pattern?
*(b) Assuming that as we add more and more terms, we are getting closer to some number x, can we find x ? [Hint: since adding one more step should not change x, we should have $x=\frac{1}{1+x} \ldots$]
*7. Find all intersection points of parabola $y=x^{2}$ and the circle with radius $\sqrt{6}$ and center at $(0,4)$.

