MATH 7

ASSIGNMENT 20: QUADRATIC EQUATION SUMMARY

QUADRATIC EQUATIONS: SUMMARY

Recall from last time

- A quadratic polynomial is expression of the form $p(x) = ax^2 + bx + c$.
- Roots of quadratic polynomial are numbers such that p(x) = 0. If x_1, x_2 are roots, then $p(x) = a(x x_1)(x x_2)$.
- Vieta formulas: if x_1, x_2 are roots of $x^2 + bx + c$, then

$$x_1 + x_2 = -b$$
$$x_1 x_2 = c$$

• Completing the square: we can rewrite

$$ax^{2} + bx + c = a\left(x + \frac{b}{2a}\right)^{2} - \frac{D}{4a} = a\left(\left(x + \frac{b}{2a}\right)^{2} - \frac{D}{4a^{2}}\right)$$

where $D = b^2 - 4ac$.

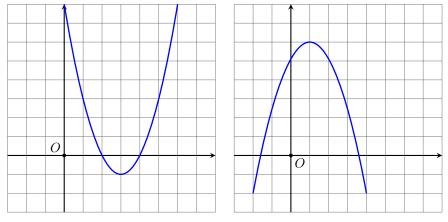
(1)

From this, one gets the quadratic formula: if D < 0, there are no roots; if $D \ge 0$, then the roots are

$$x_1, x_2 = \frac{-b \pm \sqrt{L}}{2a}$$

From formula (1), we see that:

- If a > 0, then the smallest possible value of p(x) is $-\frac{D}{4a}$, which happens when $x = -\frac{b}{2a}$. In this case the graph is a parabola with branches going up.
- If a < 0, then the *largest* possible value of p(x) is $-\frac{D}{4a}$, which happens when $x = -\frac{b}{2a}$. In this case the graph is a parabola with branches going down.



INEQUALITIES

To solve inequality of the form $ax^2 + bx + c > 0$: first, find the roots. Then,

- if a > 0, p(x) > 0 for $x < x_1$ and for $x > x_2$, and p(x) < 0 between the roots
- if a < 0, p(x) < 0 for $x < x_1$ and for $x > x_2$, and p(x) > 0 between the roots

Homework

- 1. For what values of a does the polynomial $x^2 + ax + 14$ has no roots? exactly one root? two roots?
- 2. Solve the following equations and inequalities. For each polynomial, also sketch the graph.

(a)
$$x^2 - 5x + 4 < 0$$
 (b) $2x^2 + 5x - 3 > 0$ (c) $x^2 > 1 + x$
(d) $-x^2 + 2x - 4 > 0$ (e) $x^2 - x + 6 \ge 0$

- **3.** Let x_1, x_2 be roots of equation $x^2 + 3x + 4 = 0$. Find (a) $x_1^2 + x_2^2$ (b) $\frac{1}{x_1^2} + \frac{1}{x_2^2}$
- 4. Of all the rectangles with perimeter 4, which one has the largest area? [Hint: if sides of the rectangle are a and b, then the area is A = ab, and the perimeter is is 2a + 2b = 4. Thus, b = 2 a, so one can write A using only a....]
- 5. Prove that for any point P on the parabola $y = \frac{x^2}{4} + 1$, the distance from P to the x-axis is equal to the distance from P to the point (0, 2).
- 6. This question is about making sense of the following (infinite) expression

$$\frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \dots}}}}$$

(a) Compute the first several approximations (write the fractions in simplest form):

$$\frac{1}{1+1}; \qquad \frac{1}{1+\frac{1}{1+1}}; \qquad \frac{1}{1+\frac{1}{1+\frac{1}{1+1}}}$$

Can you guess the pattern?

- *(b) Assuming that as we add more and more terms, we are getting closer to some number x, can we find x? [Hint: since adding one more step should not change x, we should have $x = \frac{1}{1+x}$...]
- *7. Find all intersection points of parabola $y = x^2$ and the circle with radius $\sqrt{6}$ and center at (0, 4).