MATH 8 ASSIGNMENT 5: DIVISIBILITY

OCT 22, 2017

DIVISIBILITY

Notation:

 \mathbb{Z} — all integers

 \mathbb{N} — positive integers: $\mathbb{N} = \{1, 2, 3...\}.$

We write d|a if d is a divisor of a, i.e., a = dk for some integer k. For example, 6|30 We will frequently use (without proof) division with remainder:

for any integer a and positive integer n, we can find q, r such that

(1)

Moreover, q and r are uniquely determined: they are called quotient and remainder upon division of a by n.

a = qn + r,

Problems

 $0 \leq r < n$

1. Show that if a|b and b|c, then a|c. For example: 6|30, and 30|240, so 6|240.

- **2.** Show that if a, b are divisible by d, then each of the following numbers is divisible by d:
 - (a) a + b
 - (b) 5a + 3b
 - (c) any number of the form na + mb, with integer n, m.
 - (d) remainder r upon division of a by b
- **3.** Let a = qb + r.
 - (a) Show that then each common divisor of a, b is also a divisor of r.
 - (b) Conversely, show that if d is a common divisor of b, r then it is also a divisor of a.
- **4.** Show that if p_1, \ldots, p_k are prime, then the number $p_1p_2 \ldots p_k+1$ is not divisible by any of p_i . Deduce from this that there are infinitely many primes.
- 5. Show that if n is a positive integer, then $n^2 + 8n + 17$ is not divisible by n + 4.
- 6. (a) Show that for any integer n, n²⁰¹² 1 is divisible by n 1. [Hint: geometric progression!]
 (b) Show that for any integer n, n²⁰¹³ + 1 is divisible by n + 1. [Hint: write n = -m.]
- 7. Compute $(\sqrt{2} + \frac{1}{\sqrt{2}})^4$. Can you write it in the form $x + \sqrt{2}y$, with rational x, y?
- 8. Find the constant term of $(x + x^{-1})^{20}$. What about $(x + x^{-1})^{21}$?
- *9. What are the first 100 digits after the decimal point in the number $S = (\sqrt{26} + 5)^{100}$? [Hint: $(\sqrt{26} - 5)^{100}$ is a really small number...]