MATH 8

ASSIGNMENT 5: DIVISIBILITY

OCT 22, 2017

Divisibility

Notation:

\mathbb{Z} - all integers
\mathbb{N} - positive integers: $\mathbb{N}=\{1,2,3 \ldots\}$.
We write $d \mid a$ if d is a divisor of a, i.e., $a=d k$ for some integer k. For example, $6 \mid 30$
We will frequently use (without proof) division with remainder:
for any integer a and positive integer n, we can find q, r such that

$$
\begin{equation*}
a=q n+r, \quad 0 \leq r<n \tag{1}
\end{equation*}
$$

Moreover, q and r are uniquely determined: they are called quotient and remainder upon division of a by n.

Problems

1. Show that if $a \mid b$ and $b \mid c$, then $a \mid c$. For example: $6 \mid 30$, and $30 \mid 240$, so $6 \mid 240$.
2. Show that if a, b are divisible by d, then each of the following numbers is divisible by d :
(a) $a+b$
(b) $5 a+3 b$
(c) any number of the form $n a+m b$, with integer n, m.
(d) remainder r upon division of a by b
3. Let $a=q b+r$.
(a) Show that then each common divisor of a, b is also a divisor of r.
(b) Conversely, show that if d is a common divisor of b, r then it is also a divisor of a.
4. Show that if p_{1}, \ldots, p_{k} are prime, then the number $p_{1} p_{2} \ldots p_{k}+1$ is not divisible by any of p_{i}. Deduce from this that there are infinitely many primes.
5. Show that if n is a positive integer, then $n^{2}+8 n+17$ is not divisible by $n+4$.
6. (a) Show that for any integer $n, n^{2012}-1$ is divisible by $n-1$. [Hint: geometric progression!]
(b) Show that for any integer $n, n^{2013}+1$ is divisible by $n+1$. [Hint: write $n=-m$.]
7. Compute $\left(\sqrt{2}+\frac{1}{\sqrt{2}}\right)^{4}$. Can you write it in the form $x+\sqrt{2} y$, with rational x, y ?
8. Find the constant term of $\left(x+x^{-1}\right)^{20}$. What about $\left(x+x^{-1}\right)^{21}$?
*9. What are the first 100 digits after the decimal point in the number $S=(\sqrt{26}+5)^{100}$?
[Hint: $(\sqrt{26}-5)^{100}$ is a really small number...]
