MATH 8

ASSIGNMENT 8: CONGRUENCES

NOV 12, 2017

Reminder: Euclid's algorithm

Recall that as a corollary of Euclid's algorithm we have the following result:
Theorem. An integer m can be written in the form

$$
m=a x+b y
$$

if and only if m is the multiple of $\operatorname{gcd}(a, b)$.
For example, if $a=18, b=33$, then the numbers that can be written in the form $18 x+33 y$ are exactly the multiples of 3 .

To find the values of x, y, one can use Euclid's algorithm; for small a, b, one can just use guess-and-check.

Congruences

We will write

$$
a \equiv b \quad \bmod m
$$

(reads: a is congruent to b modulo m) if a, b have the same reminder upon division by m, or, equivalently, if $a-b$ is a multiple of m. For example

$$
9 \equiv 2 \equiv 23 \equiv-5 \quad \bmod 7
$$

We will occasionally write $a \bmod m$ for remainder of a upon division by m.
Congruences can be added and multiplied in the same way as equalities: if

$$
\begin{aligned}
a & \equiv a^{\prime} & \bmod m \\
b & \equiv b^{\prime} & \bmod m
\end{aligned}
$$

then

$$
\begin{aligned}
a+b & \equiv a^{\prime}+b^{\prime} \quad \bmod m \\
a b & \equiv a^{\prime} b^{\prime} \quad \bmod m
\end{aligned}
$$

For example, since $23 \equiv 2 \bmod 7$, we have

$$
23^{3} \equiv 2^{3} \equiv 8 \equiv 1 \quad \bmod 7
$$

One important difference is that in general, one can not divide both sides of an equivalence by a number: for example, $5 a \equiv 0 \bmod m$ does not necessarily mean that $a \equiv 0 \bmod m$ (see problem 6 below).

Problems

When doing this homework, be careful that you only used the material we had proved or discussed so far - in particular, please do not use the prime factorization. And I ask that you only use integer numbers no fractions or real numbers.

1. (a) Find $\operatorname{gcd}(48,39)$
(b) Solve $48 x+39 y=3$
2. (a) Compute remainders modulo 12 of $5,5^{2}, 5^{3}, \ldots$ Find the pattern and use it to compute 5^{1000} $\bmod 12$
(b) Prove that for any a, m, the sequence of remainders $\bmod m: a \bmod m, a^{2} \bmod m, \ldots \ldots$ starts repeating periodically (we will find the period later). [Hint: have you heard of pigeonhole principle?]
3. Find the last digit of 7^{2013}; of $7^{7^{7}}$
4. For each of the following equations, find at least one solution (if exists; if not, explain why)

$$
\begin{array}{ll}
5 x \equiv 1 & \bmod 19 \\
9 x \equiv 1 & \bmod 24 \\
9 x \equiv 6 & \bmod 24
\end{array}
$$

5. Give an example of a, m such that $5 a \equiv 0 \bmod m$ but $a \not \equiv 0 \bmod m$
6. Show that the equation $a x \equiv 1 \bmod m$ has a solution if and only if $\operatorname{gcd}(a, m)=1$. [Such an x is called the inverse of a modulo m]
7. Find the following inverses
inverse of $2 \bmod 5$
inverse of $5 \bmod 7$
inverse of $7 \bmod 11$
