MATH 8

ASSIGNMENT 4: EULER'S THEOREM
 JAN 21ST, 2018

In two weeks we are going to start Geometry. Please buy: "The Art of Problem Solving, Volume 1: The Basics" by Sandor Lehoczky and Richard Rusczyk, ISBN-13: 978-0-9773045-6-1. Please do not get the solution manual (or hide it for emergencies). It is important that you try the problems on your own.

Theorem. If a, m are relative prime, then $a^{\varphi(m)} \equiv 1 \bmod m$, where $\varphi(m)$ is Euler's totient function which gives the number of remainders mod m that are relative prime to m.

Proof. First, we write down all remainders mod m that are relative prime to $m:\left\{1, r_{1}, r_{2}, \ldots, m-1\right\}$. Since 1 and $m-1$ are relative prime to m, we can see that $\left\{a, r_{1} a, r_{2} a, \ldots,(m-1) a\right\}$ is a rearrangement of $\left\{1, r_{1}, r_{2}, \ldots, m-1\right\}$. Since $\operatorname{gcd}(a, m)=1, r_{i} a \equiv r_{j} a \bmod m$ means that $r_{i} \equiv r_{j} \bmod m$. Since the two lists are the same $\bmod m$, we have:

$$
a \cdot r_{1} a \cdot r_{2} a \cdots(m-1) a \equiv 1 \cdot r_{1} \cdot r_{2} \cdots(m-1) \quad \bmod m
$$

But since all the r_{i} are relative prime to m, we can cancel them

$$
a \cdot a \cdot a \cdots a \equiv 1 \quad \bmod m
$$

How many a's are there? It is the number of integers less than m and relative prime to m. This function is called Euler's $\varphi(n)$.

$$
a^{\varphi(m)} \equiv 1 \quad \bmod m
$$

Theorem. We proved the following during last class for p prime

$$
\begin{aligned}
\varphi(p) & =p-1 \\
\varphi\left(p^{k}\right) & =p^{k-1}(p-1)
\end{aligned}
$$

Theorem. $\varphi(n)$ is multiplicative: if m, n are relatively prime, then $\varphi(m n)=\varphi(m) \varphi(n)$.
Proof. The trick is to write the number of integers from 1 to $m n$ in a grid:

1	$m+1$	$2 m+1$	\cdots	$(n-1) m+1$
2	$m+2$	$2 m+2$	\cdots	$(n-1) m+2$
\vdots	\vdots	\vdots	\ddots	\vdots
m	$2 m$	$3 m$	\cdots	$m n$

Consider an element r that is not relativ prime to m. Then any element in the row:

$$
r \quad m+r \quad 2 m+r \quad \cdots \quad(n-1) m+r
$$

is not relative prime to $m n$. Thus, when counting elements relative prime to $m n$, we only need to consider rows starting with elements relative prime to m. There are $\varphi(m)$ such rows. Lets consider such a row, made up of elements $k m+r$ for $k=0,1, \ldots,(n-1)$. The row contains n elements, and no two of these elements are congruent $\bmod n$ (remember that n, m are relative prime). Since we have n elements and no two are congruent, the elements of the row are a rearrangement of $0,1, \ldots, n-1$. Thus $\varphi(n)$ of these elements are relative prime. All in all, there are $\varphi(m)$ rows of elements relative prime to m, with $\varphi(n)$ elements in each row relative prime to n so there are $\varphi(m) \varphi(n)$ total elements relative prime to $m n$.

