MATH 8 ASSIGNMENT 4: EULER'S THEOREM

 $\mathrm{JAN}\ 21\mathrm{ST},\ 2018$

In two weeks we are going to start Geometry. Please buy: "The Art of Problem Solving, Volume 1: The Basics" by Sandor Lehoczky and Richard Rusczyk, ISBN-13: 978-0-9773045-6-1. Please do not get the solution manual (or hide it for emergencies). It is important that you try the problems on your own.

Theorem. If a, m are relative prime, then $a^{\varphi(m)} \equiv 1 \mod m$, where $\varphi(m)$ is Euler's totient function which gives the number of remainders mod m that are relative prime to m.

Proof. First, we write down all remainders mod m that are relative prime to m: $\{1, r_1, r_2, \ldots, m-1\}$. Since 1 and m-1 are relative prime to m, we can see that $\{a, r_1a, r_2a, \ldots, (m-1)a\}$ is a rearrangement of $\{1, r_1, r_2, \ldots, m-1\}$. Since gcd(a, m) = 1, $r_ia \equiv r_ja \mod m$ means that $r_i \equiv r_j \mod m$. Since the two lists are the same mod m, we have:

$$a \cdot r_1 a \cdot r_2 a \cdots (m-1)a \equiv 1 \cdot r_1 \cdot r_2 \cdots (m-1) \mod m$$

But since all the r_i are relative prime to m, we can cancel them

$$a \cdot a \cdot a \cdots a \equiv 1 \mod m$$

How many a's are there? It is the number of integers less than m and relative prime to m. This function is called Euler's $\varphi(n)$.

$$a^{\varphi(m)} \equiv 1 \mod m$$

Theorem. We proved the following during last class for p prime

$$\begin{aligned} \varphi(p) &= p - 1\\ \varphi(p^k) &= p^{k-1}(p-1) \end{aligned}$$

Theorem. $\varphi(n)$ is multiplicative: if m, n are relatively prime, then $\varphi(mn) = \varphi(m)\varphi(n)$.

Proof. The trick is to write the number of integers from 1 to mn in a grid:

1	m+1	2m + 1	• • •	(n-1)m+1
2	m+2	2m+2	• • •	(n-1)m+2
:	÷	:	•.	:
•	•	•	•	•
m	2m	3m		mn

Consider an element r that is not relative prime to m. Then any element in the row:

 $r \quad m+r \quad 2m+r \quad \cdots \quad (n-1)m+r$

is not relative prime to mn. Thus, when counting elements relative prime to mn, we only need to consider rows starting with elements relative prime to m. There are $\varphi(m)$ such rows. Lets consider such a row, made up of elements km + r for $k = 0, 1, \ldots, (n-1)$. The row contains n elements, and no two of these elements are congruent mod n (remember that n,m are relative prime). Since we have n elements and no two are congruent, the elements of the row are a rearrangement of $0, 1, \ldots, n-1$. Thus $\varphi(n)$ of these elements are relative prime. All in all, there are $\varphi(m)$ rows of elements relative prime to m, with $\varphi(n)$ elements in each row relative prime to n so there are $\varphi(m)\varphi(n)$ total elements relative prime to mn.