Homework for December 17, 2017.

Geometry.

Review the previous classwork notes. Solve the following problems, including problems from the last homework (if you have not solved them yet).

Problems.

- 1. In an isosceles triangle ABC with the angles at the base, $\angle BAC = \angle BCA = 80^{\circ}$, two Cevians CC' and AA' are drawn at an angles $\angle BCC' = 20^{\circ}$ and $\angle BAA' = 10^{\circ}$ to the sides, AB and CB, respectively (see Figure). Find the angle $\angle AA'C' = x$ between the Cevian AA' and the segment A'C'connecting the endpoints of these two Cevians.
- 2. Write the proof of the Euclid theorem, which states the following. If two chords AD and BC intersect at a point P'outside the circle, then

$$|P'A||P'D| = |P'B||P'C| = |PT|^2 = d^2 - R^2$$
,

where |PT| is a segment tangent to the circle (see Figure).

$$|AC| \cdot |BD| < |AB| \cdot |CD| + |BC| \cdot |AD|$$

Where the equality occurs if *ABCD* is inscribable in a circle (try using the triangle inequality).

- 4. Using the Ptolemy's theorem, prove the following:
 - a. Given an equilateral triangle \triangle ABC inscribed in a circle and a point *Q* on the circle, the distance from point *Q* to the most distant vertex of the triangle is the sum of the distances from the point to the two nearer vertices.
 - b. In a regular pentagon, the ratio of the length of a diagonal to the length of a side is the golden ratio, ϕ .

- 5. Given a circle of radius *R*, find the length of the sagitta (Latin for arrow) of the arc *AB*, which is the perpendicular distance *CD* from the arc's midpoint (*C*) to the chord *AB* across it.
- 6. Prove the Viviani's theorem:

The sum of distances of a point P inside an equilateral triangle or on one of its sides, from the sides, equals the length of its altitude. Or, alternately,

From a point P inside (or on a side) of an equilateral triangle ABC drop perpendiculars PP_a , PP_b , PP_c to its sides. The sum $|PP_a| + |PP_b| + |PP_c|$ is independent of P and is equal to any of the triangle's altitudes.

7. *Three Points are taken at random on an infinite plane. Find the chance of their being the vertices of an obtuse-angled Triangle. Hint: use the Viviani's theorem.

Algebra.

Review the last classwork handout. Review and solve the classwork exercises which were not solved and unsolved problems from the previous homeworks.

- 1. Using Eucleadean algorithm, provide the continued fraction representation for the following numbers. Using the calculator, compare the values obtained by truncating the continued fraction at 1^{st} , 2^{nd} , 3^{rd} , ... level with the value of the number itself (in decimal representation).
 - a. $\frac{1351}{780}$
 - b. $\frac{25344}{8069}$
 - c. $\frac{29376}{9347}$
 - d. $\frac{6732}{1785}$
 - e. $\frac{2187}{2048}$
 - f. $\frac{3125}{2401}$
- 2. Is there a number, *x*, represented by the following infinite continued fraction? If so, find it.

a.
$$x = 5 - \frac{6}{5 - \frac{6}{5 - \frac{6}{5 - \cdots}}}$$

b.
$$x = 2 - \frac{1}{2 - \frac{1}{2 - \frac{1}{2 - \dots}}}$$

c. $x = 1 - \frac{6}{1 - \frac{6}{1 - \frac{6}{1 - \dots}}}$

c.
$$x = 1 - \frac{6}{1 - \frac{6}{1 - \frac{6}{1 - \dots}}}$$