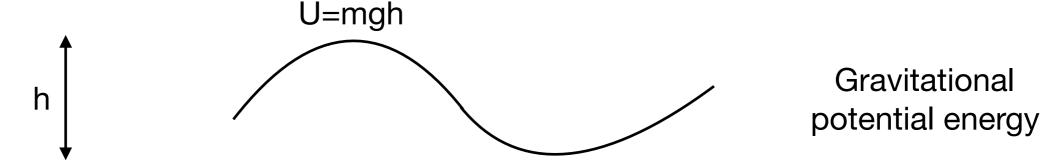


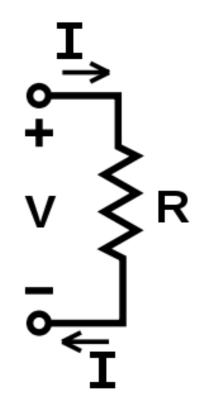
Electric Current (reminder)


Electric Current (represented by letter I) is the total charge flowing through a given cross section of the wire in 1 sec. Current is measured in Amperes [A] (Coulomb per second): 1A=1C/s.

$$I = \frac{\Delta Q}{\Delta t}$$

mindar)

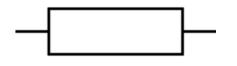
Potential Energy (reminder)


Potential Energy is the energy possessed by an object because of its position relative to other objects. Sometimes, we say, that potential energy is an ability to do work.

Ohm's Law

- V is Voltage Drop, the Potential Difference between two ends of a wire (or resistor, light bulb etc). V is the difference of electric potential energies of a unit charge between two points. Measured in Volts [V] (Joule per Coulomb): 1V=1J/C
- I is Electric Current, the total charge flowing through the wire in 1 sec. Measured in Amperes [A] (Coulomb per second):
 1A=1C/s

• R is Resistance of the wire. Measured in Ohms $[\Omega]$. $1\Omega=1V/A$


Ohm's Law: the current through a conductor between two points is directly proportional to the voltage across the two points. The voltage is, therefore, proportional to the current.

$$V = I \cdot R$$

The coefficient of proportionality is called **resistance** of the conductor


$$R = \frac{V}{I} \qquad I = \frac{V}{R}$$

Series and Parallel Circuits

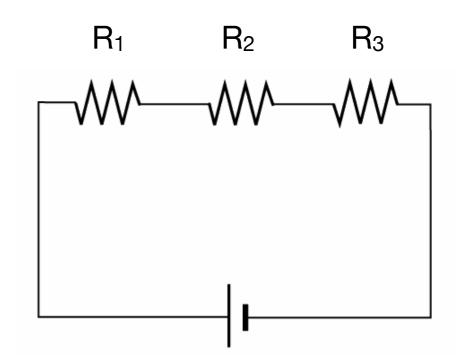
Series Circuit

- ullet Currents are the same: $I_1=I_2$
- ullet Voltages are added: $V=V_1+V_2$

Parallel Circuit

- ullet Voltages are the same: $\,V_1=V_2\,$
- Currents are added: $I=I_1+I_2$

Homework


Problem 1

A resistor $R=10~\Omega$ is connected to a 1.5V battery. Sketch the circuit, and find the total current flowing via the battery.

Problem 2

Three resistors: $R_1=10~\Omega$, $R_2=20~\Omega$ and $R_3=30~\Omega$ are connected in series as shown in the figure.

- a) Current that runs through the first resistor is I=0.5A. Show the direction of the current. What are the currents that run through the other two resistors?
- **b)** Find the voltage drop on each resistor, and the voltage supplied by the battery.

