

Power (reminder)

- Power is the rate of doing work.
- The SI unit of power is the watt (W), which is equal to one joule per second 1W=1J/sec.
- Power is a scalar quantity (number). It does not have a direction.
- Work may be mechanical work, or work done by a battery driving an electric current.
- Work can be replaced by Heat. That will be thermal power rather than mechanical or electric one.

$$P = \frac{W}{t}$$

$$power = \frac{work}{time}$$

Example:

The power 100 W approximately corresponds to:

- lifting 10 kg to the height of 1 meter in 1 second
- the power required to operate a 100 W bulb
- heating 1 L of water by 15 degree Celsius in 10 minutes

Power in electric circuits

Ohm's Law

$$V = I \cdot R$$

V is **Voltage Drop**, the **Potential Difference** between two ends of a wire (or resistor, light bulb etc). **V** is the difference of electric potential energies of a unit charge between two points.

- Assume that a battery pushes the charge Q through the potential difference V in time t.
- This means that the work done by battery is W=QV
- The power required for this is P=W/t =QV/t=V(Q/t)
- Q/t can be recognized as the current I
- We have the formula for the electric power P=V I
- Other forms can be obtained using Ohm's law

$$P = I \cdot V$$

$$Power = Current \times Voltage$$

$$P = I \cdot V = I^2 R = \frac{V^2}{R}$$

Homework

Problem 1

An electric motor is used to lift a mass m=50 kg to height h=10m, over time t=10s. Find the power of the motor and current that runs through it, if the voltage on the motor is V=110V.

Problem 2

Find the total power supplied by the battery in circuits shown in the Figure. In both cases the values of all resistances are 100Ω and the voltage produced by battery is $V_{batt}=15 \text{ V}$.

