Equation of Uniform Motion

- Motion with constant velocity is called Uniform:

$$
\vec{v}=c o n s t
$$

- Equation of Motion gives position of a particle as a function of time.
- Equation of Uniform Motion in 1D:

$$
x(t)=x_{0}+v\left(t-t_{0}\right)
$$

Here $x_{0}=x\left(t_{0}\right)$ is coordinate x at time $t=t_{0}$ v is the constant velocity (can be positive or negative)

Homework

Problem 1.

A school bus leaves the stop at time $t=0$ s and drives towards the school with speed $v_{1}=10 \mathrm{~m} / \mathrm{s}$. A superhero student arrives to the stop $T=60 \mathrm{~s}$ late. He runs to school with average speed $v_{2}=12 \mathrm{~m} / \mathrm{s}$.
a) Write down equations of motion both for the bus and for the student. Don't forget to sketch the picture and show your choice of coordinate system.
b) From your equations, determine the time at which the student will catch up the bus.

Problem 2.

While on vacation in Pisa, Italy, James Bond learns that a villain named Dr. Nope from Venice is about to purchase a secret and deadly weapon code-named Big Mac. It is to be sold by certain Merchant based in the city of Florence. Florence is on the way between Pisa and Venice, distance from Florence to Pisa is $d_{1}=45 \mathrm{~km}$, and from Florence to Venice is $d_{2}=250 \mathrm{~km}$. Both the Merchant and Dr. Nope want to meet and finish the deal as soon as possible.

As a result, all three of them get to their cars. Dr. Nope starts from Venice and drives towards Florence with average speed $\mathrm{v}_{1}=120 \mathrm{~km} / \mathrm{hr}$. At the very same moment, the Merchant (from Florence) and James Bond (form Pisa) start driving towards Venice. The Merchant's speed is $s_{2}=$ $130 \mathrm{~km} / \mathrm{hr}$.

-45	0	250	Venice
Pisa	Florence		

a) How much time will it take for Dr. Nope and the Merchant to meet, if Bond is detained by Italian Police for speeding? To solve this part, write Equations of Motion for Dr. Nope and the Merchant.
b) In fact, James Bond did escape from the police chase. What must be Bond's average speed to ensure that all three of them meet at the same point (to have prolonged fight with shooting and special effects)? You will need to write Equation of motion for James Bond.

