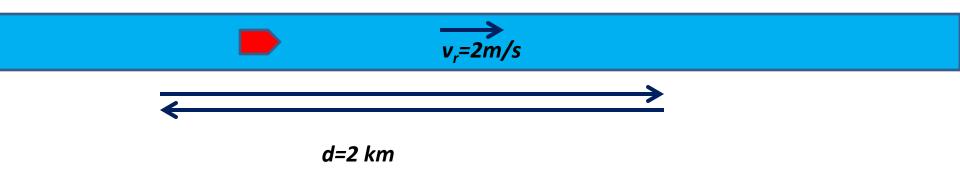
Reference Frame

- In order to describe a motion, we need to specify the **Reference Frame**, i.e. Coordinate System at each moment of time.
- **Examples:** Reference Frame of a moving train, of water in river, of a person on a bench, of Sun.
- of Sun. • Switching between Reference Frames: $\vec{v}^* = \vec{v} - \vec{u}$ (Velocity in Moving Velocity in Stationary Reference Frame) Reference Frame: **x*** Moving Reference Frame (with velocity \vec{u}) Χ

Stationary Reference Frame

Homework 5


A car of length L=4.0m is moving on a road. Its position is determined by three photogates (like we did in class): Gate 1. Gate 2 and Gate 3. The table below shows the time moments at which each of gates gets blocked and unblocked (t_1 and t_2), in seconds:

GATE #	t ₁ ,s (gate blocked)	t ₂ ,s (gate unblocked)	v, m/s
Gate 1	0.000	0.120	
Gate 2	5.210	5.300	
Gate 3	7.070	7.140	

- a) Find the speed of the car at the moments when it passed each gate, and fill the blanks in the table.
- b) Find accelerations of the car when it travels between Gates 1 and 2, and Gates 2 and 3
- c) Estimate the distances between Gates 1,2 and 3.

Problem 2

River flows with speed $v_r=2m/s$. A fisherman uses his boat to get to a village situated at distance $d=2 \ km$ down the river, and returns back to his home. During the whole trip, the speed of the boat is V=3m/s with respect to the water. Find the total time of the two-way trip. Does river flow make it longer or shorter?

