Friction Force

• STATIC FRICTION Imagine that you try to move a block on a floor by pushing it with force F. The block does not move because of static friction with the floor. That force oppose motion, and will be equal to F to make sure that the block is at rest. However it cannot be bigger than certain maximum value:

$$F_f^{(static)} < \mu_s N$$

Here N is the Reaction Force, and μ is called static friction coefficient (normally, μ_s <1).

 KINETIC FRICTION Once the block starts moving, the friction force will stay nearly constant, and equal to:

$$F_f^{(kinetic)} = \mu_k N$$

 μ_k is called kinetic friction coefficient ($\mu_k < \mu_s$).

Hooke's Law

When a spring is stretched or compressed, the *restoring force* **F** is proportional to its *deformation*, **x**:

$$F = -kx$$

Here k is called spring constant. "-" sign shows that this force opposes deformation.

Homework

Problem 1.

Let the coefficient of kinetic friction between car tires and the road surface be μ =0.3 (typical for wet road). When the car moves at speed v= 30 m/s, the driver suddenly applies breaks. Find the time it will take for the car to stop.

Problem 2

For the system shown in the picture, find the minimal coefficient of static friction at

which the blocks are NOT moving.

Problem 3

When a mass is suspended by a spring, the spring is extended by 5 cm. Now imagine that you are pulling the same spring with the same mass up, with acceleration 4m/s². What will be an extension of the spring?