Homework 15

Electric potential

The potential energy where of two charges separated by a distance r is

$$
\begin{equation*}
P=k \frac{q_{1} \cdot q_{2}}{r} \tag{1}
\end{equation*}
$$

Let us keep one of the charges, say, q1 fixed and change the charge q2. Since there is a product of the charge magnitudes in the numerator of formula (1), the potential energy will increase or decrease together with the charge magnitude of q_{2}. We can now calculate the potential energy per unit charge. For this we will divide the potential energy of the interacting charges q 1 and q 2 by the magnitude of q2:

$$
\begin{equation*}
\frac{P}{q_{2}}=k \frac{q_{1} \cdot q_{2}}{r} \div q_{2}=k \frac{q_{1}}{r} \tag{2}
\end{equation*}
$$

We can imagine that each point of space around the charge q_{1} can be characterized by the potential energy of a positive unit charge in this point. The electrostatic potential energy of a positive unit charge in a certain point is called "electric potential" in this point. The electric potential is a scalar. The electric potential $\boldsymbol{\varphi}$ created by the point charge \boldsymbol{q} is:

$$
\begin{equation*}
\varphi=k \frac{q}{r} \tag{3}
\end{equation*}
$$

If the charge q is negative, the potential will be negative as well.
The formula (3) means that a unit positive point charge placed at the distance r from the charge q will have potential energy $\boldsymbol{\varphi}$. If we will place an arbitrary charge Q at the distance r (instead of a unit charge) then the potential energy of the charge Q can be calculated as:

$$
P=k \frac{q}{r} \cdot Q=\boldsymbol{Q} \cdot \boldsymbol{Q}
$$

As we can see from the formula (3) the potential created by a point charge depends on the distance to the point charge. Difference of potentials taken in points A and B equals to the difference of potential energy of a unit positive charge in these points. As (I hope) you remember difference of potential energy of an object in points B and A is also equal to the work $W_{A B}$ of the electric force to transfer the unit positive charge from point A to point B. If a charged object with a charge q moves from point A to point B, the work of the electric force is:

$$
W_{A B}=P_{A}-P_{B}=q \varphi_{A}-q \varphi_{B}=q\left(\varphi_{A}-\varphi_{B}\right)=q U_{A B}
$$

Here P_{A}, P_{B}-electrostatic potential energies in points A and $\mathrm{B} ; \varphi_{A}, \varphi_{B}$ - the electrostatic potentials, $U_{A B}=\varphi_{A}-\varphi_{B}$ is the potential difference which is also called "voltage between points A and B ".

Problems:

1. An object with a charge of 0.01 C being accelerated by electrostatic force moves from point A to point B and gains kinetic energy of $6 J$. Find the potential difference between points A and B.
2. There is a point charge of -1 C (see picture below). The distance between the charge and the point A is 100 m , the distance between the points A and B is also 100 m . Find the potential difference between points A and B .

