

Conversion of Units

- For the same quantity measured, we can convert units using an equivalence statement which shows the relationship between the units (this relationship is called a conversion factor).

Imperial-Metric equivalence statements:

Units of Length Units of Weight Units of Capacity
$\Rightarrow 1 \mathrm{in}=2.54 \mathrm{~cm}$
$>3.28 \mathrm{ft}=1 \mathrm{~m}$
> $1 \mathrm{mi}=1.61 \mathrm{~km}$
$>1 \mathrm{oz}=28.35 \mathrm{~g}$
$>1 \mathrm{lb}=454 \mathrm{~g}$
>1.06 qt $=1 \mathrm{~L}$
$>1 \mathrm{gal}=3.79 \mathrm{~L}$
> $2.2 \mathrm{lb}=1 \mathrm{~kg}$

- Units that measure physical quantities (like the examples above) always have a common zero.
- Within the Metric System itself, by design, conversion factors are always a power of 10.

Dimensional Analysis

- Dimensional Analysis (also called Factor-Label Method or the Unit Factor Method) is a problemsolving method that uses the fact that any number or expression can be multiplied by one (Magic One) without changing its value.
- To help with conversion of units, Magic One is built using the equivalence statement:
Equivalence Statement(s)

Magic One(s)

$1 \mathrm{in}=2.54 \mathrm{~cm}$

$$
\frac{1 \mathrm{in}}{2.54 \mathrm{~cm}}=1
$$

$$
\frac{2.54 \mathrm{~cm}}{1 \mathrm{in}}=1
$$

$\frac{2.2 \mathrm{lb}}{1 \mathrm{~kg}}=1$

$$
\frac{1 \mathrm{~kg}}{2.2 \mathrm{lb}}=1
$$

Example: Convert 130 lbs to kg

$>$ Step 1. Write the original measurement as a unit fraction:

$$
130 \mathrm{lbs} / 1
$$

> Step 2. Using the equivalence statement, build a magic one (building rule - the numerator unit is the unit you want, the denominator unit is the original unit you want to eliminate):

$$
2.2 \mathrm{lb}=1 \mathrm{~kg} \quad \Longleftrightarrow \frac{1 \mathrm{~kg}}{2.2 \mathrm{lb}}=1
$$

$>$ Step 3: multiply your unit fraction by your magic one and write your answer in the new units:

Example: The fuel tank of a plane can hold 876 liters of gas. How many gallons would it be?

Equivalency: 1 gallon = 3.8 liters
$\frac{876 \mathrm{~L}}{1} \cdot \frac{1 \mathrm{gal}}{3.8 \mathrm{~K}}=\frac{876 \mathrm{gal}}{3.8}=230.5 \mathrm{gal}$

Exercise: As a practical joke, on the show Candid Camera, a gas station listed their price as $\$ 1.79 / \mathrm{L}$. People gassing up thought they were getting a great deal, but then were outraged when their total owed came up. WHY?

Let's carefully examine: "Listed their price as $\$ 1.79 / \mathrm{L}$ "

Equivalency: 1 gal $=3.79 \mathrm{~L}$
$\frac{\$ 1.79}{1 \mathrm{~K}} \cdot \frac{3.79 \not \subset}{1 \mathrm{gal}}=\frac{\$ 6.78}{1 \mathrm{gal}}$
"The deal" was actually \$6.78/gal!

Conversion of Temperature

When converting temperature between different scales, we need to pay attention to the fact that they all have different " 0 " points, therefore not only a multiplication factor is needed but also a shift.

Kelvin

$\mathrm{K}={ }^{\circ} \mathrm{C}+273.15$

Fahrenheit

$$
{ }^{\circ} \mathrm{F}={ }^{\circ} \mathrm{C} \cdot 1.8+32={ }^{\circ} \mathrm{C} \cdot \frac{9}{5}+32
$$

Celsius

$$
{ }^{\circ} \mathrm{C}=\left({ }^{\circ} \mathrm{F}-32\right) / 1.8=\left({ }^{\circ} \mathrm{F}-32\right) \cdot \frac{5}{9}
$$

Temperature Scales

Note: according to the latest research, normal human body temperature is $36.8{ }^{\circ} \mathrm{C} \pm 0.7^{\circ} \mathrm{C}$, or $98.2^{\circ} \mathrm{F} \pm 1.3^{\circ} \mathrm{F}$.

Orders of Magnitude

- Orders of magnitude are numbers on a scale where each number is rounded to the nearest power of ten.
- Orders of magnitude are generally used to make very approximate comparisons of measurements, and reflect very large differences.
- To be able to compare something by means of orders of magnitude we have to use the same units (Standard SI units are typically used)!

Examples of Difference

- If two numbers differ by one order of magnitude, one is about ten times larger than the other.

$\times 10 \approx$

- If they differ by two orders of magnitude, they are related by a factor of about 100 .

By how many orders of magnitude is a giraffe taller than an ant?

A giraffe is about 6 m tall: nearest power of ten is $10 \mathrm{~m}=1 \times 10^{1} \mathrm{~m}=10^{1} \mathrm{~m}$

An ant is about 0.7 mm tall: nearest power of ten is $1 \mathrm{~mm}=1 \times 10^{-3} \mathrm{~m}=10^{-3} \mathrm{~m}$

The giraffe is taller by $1-(-3)=4$ four orders of magnitude.

By how many orders of magnitude is human bigger than an atom?

A human is about 175 cm tall: nearest power of ten is $100 \mathrm{~cm}=1 \mathrm{~m}=10^{\circ} \mathrm{m}$

An atom is about 0.1 nm :
nearest power of ten is
$0.1 \mathrm{~nm}=0.1 \times 10^{-9} \mathrm{~m}=10^{-10} \mathrm{~m}$

The human is bigger by $0-(-10)=10$ ten orders of magnitude.

Blue Whale heart and Human heart

A Blue Whale heart is about 2000 lb :
converting lb to $\mathrm{kg} \quad 2000 \mathrm{lb} \times \frac{1 \mathrm{~kg}}{2.2 \mathrm{lb}}=909 \mathrm{~kg}$ nearest power of ten is $1000 \mathrm{~kg}=10^{3} \mathrm{~kg}$

A human heart is about $\mathbf{2 5 0} \mathbf{~ g}$: converting g to $\mathrm{kg} \quad 250 \mathrm{~g}=0.25 \mathrm{~kg}$ nearest power of ten is

$$
0.1 \mathrm{~kg}=10^{-1} \mathrm{~kg}
$$

Difference: 3-(-1)=4
four orders of magnitude

Let us compare Sun and Earth in terms of orders of magnitude

Sun vs Earth

- Mass
- Radius
$10^{27} \mathrm{~g}$
$10^{9} \mathrm{~m}$
$10^{7} \mathrm{~m}$

Sun is heavier than Earth by 6 orders of magnitude and bigger by 2 orders of magnitude.

Can you imagine that difference?

Examples

Order of Magnitude of some Masses		Order of Magnitude of some Lengths	
MASS	grams	LENGTH	meters
electron	10^{-27}	radius of proton	10^{-15}
proton	10^{-24}	radius of atom	10^{-10}
virus	10^{-16}	radius of virus	10^{-7}
amoeba	10^{-5}	radius of amoeba	10^{-4}
raindrop	10^{-3}	height of human being	10^{0}
ant	10^{0}	radius of Earth	10^{7}
human being	10^{5}	radius of Sun	10^{9}
pyramid	10^{13}	Earth-Sun distance	10^{11}
Earth	10^{27}	radius of Solar System	10^{13}
Sun	10^{33}	distance from Sun to nearest star	10^{16}
Milky Way galaxy	10^{44}	radius of Milky Way galaxy	10^{21}
the Universe	10^{55}	radius of observable Universe	10^{26}

Powers of Ten video

https://www.youtube.com/watch?v=bhofN1xX6u0
https://www.youtube.com/watch?v=EMLPJqeW78Q

