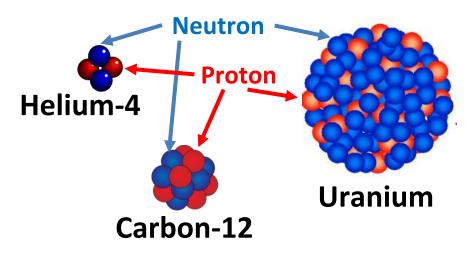

Atomic Structure Summary

- <u>All atoms</u> have:
 - > a positively charged nucleus
 - and negatively charged electrons around it

- Atomic nucleus consists of:
 - > positively charged protons
 - and neutrons that have no electric charge

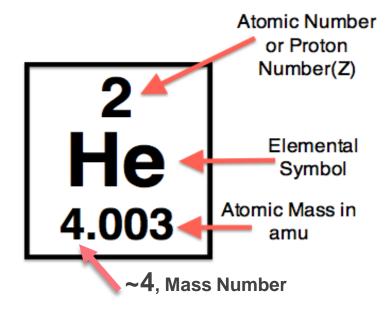
Forces Inside the Atom



Nuclear (binding) energy is the energy associated with the nuclear force:

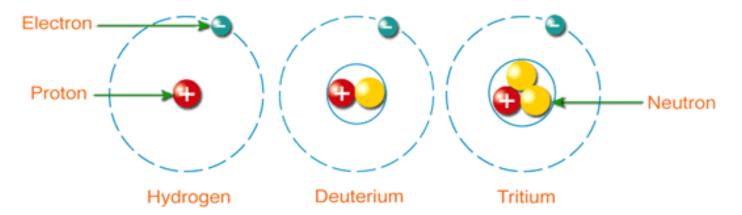
- A <u>stable atom</u> is an atom that has <u>enough binding energy</u> to hold the nucleus together permanently.
- An <u>unstable atom</u> does not have enough binding energy to hold the nucleus together permanently and <u>will lose neutrons and/or protons</u> as it attempts to become stable.

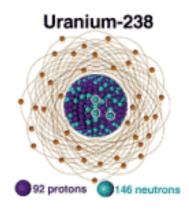
What holds an atom together?

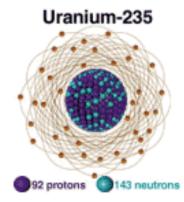

- The <u>electrons</u> are kept in orbit around the nucleus due to an <u>electromagnetic</u> <u>field of attraction</u> between the positive charge of the protons and the negative charge of the electrons.
- The <u>nucleus of protons and neutrons</u> is kept together by the <u>nuclear (strong)</u> <u>force</u>, which opposes and overcomes the electromagnetic repulsion when particles are very close to each other (~1 fm!).

Understanding Elements

The <u>number of protons and neutrons</u> in the nucleus give the atoms their <u>specific characteristics</u>.


- All atoms of the same chemical element contain the same number of protons, defined by a unique atomic number of that element.
- For example, all <u>helium</u> atoms, and only helium atoms, contain two protons and have an <u>atomic number of 2</u>.


- Atoms are also characterized by:
 - mass number, which is a sum of the number of protons and the number of neutrons in the nucleus (number of nucleons)
 - atomic mass, "relative isotopic mass" in unified atomic mass units, which is roughly (within 1%) equal to the whole mass number (since the mass of a proton and the mass of a neutron are almost the same and the mass of the atom's electrons is negligibly small)


What is Isotope?

<u>Isotopes</u> are different forms of a given element that have the same number of *protons* in each atom but differ in number of *neutrons*.

Most elements have more than one isotope.

There are 20 Plutonium isotopes, all of them unstable!

 $Pu^{228} \longrightarrow Pu^{247}$

Periodic Table Showing Isotopes

1,2 H 1 Hydrogen					<i>62</i>	220											3,4 He 2 Helium
6, 7 Li 3 Lithium	9 Be 4 Beryilium	2.1	6,7 Mass Numbers of Stable Isotopes										12, 13 C 6 Cerbon	14, 15 N 7 Nitrogen	16, 17, 18 0 8 0xygen	19 F 9 Fluorine	20, 21, 22 Ne 10 Neon
23 Na 11 Sodium	24, 25, 26 Mg 12 Magnesium	Element Name											28, 29, 30 Si 14 Silicon	31 P 15	32, 33, 34, 36 S 16 Sutter	35,37 CI 17 Chiorine	36,38,40 Ar 18 Argon
39, 41 K 19 Potassium	40,42,43, 44,46,48 Ca 20 Calcium	45 SC 21 Scandium	46,47,48, 49,50 Ti 22 Titanium	51 V 23 Vanadium	50,52,53, 54 Cr 24 Chromium	55 Mn 25	54,56,57) 58 Fe 26 Iron	59 CO 27 Coball	58,60,61; 62,64 Ni 28 Mickel	63,65 Cu 29 Copper	64,66,67, 68,70 Zn 30 Zinc	69,71 Gallium	70,72,73, 74,76 Ge 32 Germanium	75 As 33 Arsenic	74,76,77, 78,80,82 Se 34 Selenium	79,81 Br 35 Bromine	78,80,82, 83,84,86 Kr 36 Krypton
85 Rb 37 Rubidium	84,86,87, 88 Sr 38 Strentium	89 Y 39 Yttrium	90,91,92, 94,96 Zr 40 Zirconium	93 Nb 41 Nisblum	92, 94-100 MO 42	none TC 43 Technetium	96,104, 98-103 RU 44 Ruthenium	104 Rh 45 Rhodium	102,108,110 104-106 Pd 46 Palladium	107,109 Ag 47 Silver	106,108,114, 110-112,116 Cd 48 Cadmium	113 In 49 Indium	112,114-120, 122,124 Sn 50	121 Sb 51 Antimony	120,122,128, 124-126,130 Te 52 Tellurium	127 53	124,126,134, 128-132,136 Xe 54 Xenos
133 Cs 55 Cestum	130,132, 134-138 Ba 56 Barlum		174, 176-180 Hff 72 Hafnium	180,181 Ta 73 Tantalum	180,182,183, 184,186 W 74 Tungsten	185 Re 75 Rhenium	184,192, 186-190 OS 76 Osmium	191,193	192,198, 194-196 Pt 78 Platinum	197 Au 79 Gold	196,204, 198-202 Hg 80 Mercury	203, 205 TI 81 Thailium	204, 206-208 Pb 82 Lead	none Bi 83 Bismuth	none Po 84 Pelonium	none At 85 Astatine	none Rn 86 Radon
none Fr 87 Francium	none Ra 88 Radium	139 La 57 Lanthan	58	141 Pr 59 Praseodyme	142,143,14 146,148,15 Nd 60 Neodymiu	0 none Pm 61	62	Eu	Gd 64	159 Tb 65	156, 158 160-164 Dy 66	165 HO 67	162,164,166 167,168,170 Er 68 Erbium	169 Tm 69 Thulius	70	175 Lu 71	
		none Ac 89 Actiniu	Th	none Pa 91 Protectiniu	none U 92 Uranium	none Np 93	94	none Am 95 Americiu	96	none Bk 97 Berkellur	none Cf 98 Californiu	none Es 99 Einsteini	100	none Md 101	No 102	103	

- The nucleus of an iron isotope with mass number 56 is more stable than any other element's nucleus (the farther from 56 an element's mass number is, the more unstable that element's nucleus tends to be).
- The <u>heaviest element</u> that still has stable isotopes is **Lead**.

Three Types of Nuclear Reactions

- Radioactive decay an <u>unstable</u> nucleus <u>spontaneously</u> emits a small particle of <u>radiation</u> to become:
 - a different isotope of the same element or
 - a different element (such process is called *transmutation*).
- **2. Nuclear Fusion** the joining of two atoms to form a larger one.
- **3. Nuclear Fission** the <u>splitting</u> of an atom into two smaller atoms.