

DNA Damage

DNA is damaged up to 1 million times per cell per day.

- The cells have an elaborate type-of-damage-specific system of DNA repair that is constantly active.
- A cell that has accumulated a large amount of DNA damage, or one that no longer effectively repairs damage incurred to its DNA, can enter one of three possible states:
 - 1. an <u>irreversible state of dormancy</u>, known as *senescence*
 - 2. <u>cell suicide</u> (apoptosis) or programmed cell death
 - 3. <u>unregulated cell division</u>, which can lead to cancer

DNA Mutations

A <u>mutation</u> is a permanent change in the DNA sequence.

- Mutations can be:
 - spontaneous (by chance)

induced by mutagens (physical, chemical or biological agents)

- Factors that cause mutations:
 - <u>external</u> environmental factors such as sunlight, radiation, and smoking
 - <u>native</u> errors during DNA replication
- Mutations can lead to:
 - an evolutionary advantage of a certain genotype
 - <u>disease</u>, developmental delays, <u>structural abnormalities</u>, or other effects.

Example: Sickle cell anemia is a disorder in which the body makes sickle-shaped red blood cells as a result of DNA mutation.

DNA Half-Life

In 2012, researchers have calculated that DNA from bones has a <u>521 year half-life</u>, which means that the oldest clone-able samples of DNA could be no more than 2 million years old.

This result rules out any possibility of ever replicating dinosaurs, as the youngest dinosaurs were around more than 65 million years ago...

Basic Cell Types

<u>All cells</u> consist of a cytoplasm enclosed within a membrane.

Cells are typically categorized by <u>how</u> <u>their genetic material</u> <u>is packaged</u>:

<u>Eukaryote</u> - the DNA is partitioned off in its own membrane-bound room called the nucleus.

<u>Prokaryote</u> - the DNA within a cell is not separated from the cytoplasm.

Cell Membrane

The <u>cell membrane</u> (aka the *plasma membrane*) separates the interior of all cells from the outside environment.

- All membranes are lipid (fat) double layer.
- <u>Basic function</u> is to protect the cell from its surroundings.
- Selectively permeable to ions and organic molecules.
- Control the movement of substances in and out of cells.

Eukaryotic cells have specialized interior compartments, called organelles ("little organs"), that have specific functions.

Organelles

Organelles are enclosed by their own lipid membranes similar to the outermost cell membrane.

- All organelles in a cell perform <u>different</u> <u>functions</u>: details in your homework[©].
- The number of individual organelles of each type found in a given cell varies depending upon the function of that cell.
- The larger organelles, such as the nucleus and vacuoles, are easily visible with the light microscope. They were among the first biological discoveries made after the invention of the microscope.
- Both plant and animal cells have many, but not all, of the same organelles.

Nucleus

The <u>nucleus</u> is the <u>control center</u> of the cell.

- The largest organelle in the cell.
- Contains (most of) the DNA of the cell.
- The nucleus was the first organelle to be discovered: Antonie van Leeuwenhoek observed a "Lumen", the nucleus, in the red blood cells of salmon.
- <u>Main function</u> to control gene expression and mediate the replication of DNA during the cell cycle.
- Inside the nucleus is a suborganelle called the nucleolus, which is responsible for making ribosomes.

The <u>ribosome</u> is a complex molecular machine responsible for the <u>synthesis of proteins</u> in cells.

Two major components:

50S

The small subunit which reads the RNA
The large subunit which joins amino acids to form a polypeptide chain.

The ribosomes are found within all living cells.

Basic Classification of Organisms

- 1. Organisms can be classified as <u>unicellular</u> (consisting of a single cell; including most *bacteria*) or <u>multicellular</u> (including *animals*, *plants* and most *fungi*).
- 2. Organisms can be classified as <u>prokaryotic</u> (made of cells that do not have a distinct *nucleus*) or <u>eukaryotic</u> (made of cells that have *true nucleus* and *organelles*)
- All known prokaryotes (bacteria and archaea) are single cells.
- All multicellular organisms are eukaryotes.
- Some eukaryotes, like amoebae, are free-living, single-celled entities.
- All plants and animals are multicellular eukaryotic organisms.
- While the number of cells in plants and animals varies from species to species, humans contain ~100 trillion (10¹⁴) cells.
- The majority of organisms on Earth are prokaryotes...