INEQUALITIES

OCTOBER 24, 2021

Inequalities

Today we will discuss some number of inequalities. The most famous of them is the arithmetic mean geometric mean inequality:

Theorem. If x, y are non-negative real numbers, then

$$
\frac{x+y}{2} \geq \sqrt{x y}
$$

with equality if and only if $x=y$.
It can be used to find maximal value of $x y$ if the sum $x+y$ is given, or minimal value of $x+y$ if the product $x y$ is given.

It has a generalization:
Theorem. If x_{1}, \ldots, x_{n} are non-negative real numbers, then

$$
\frac{x_{1}+\cdots+x_{n}}{n} \geq \sqrt[n]{x_{1} \ldots x_{n}}
$$

with equality if and only if all x_{i} are equal.

Problems

1. (a) A rectangular garden is to be constructed using 20 m of fence. What is the maximal area of such a garden?
(b) Same problem, but now the garden is adjacent to a wall, so we only need to use teh fence for the three remainign sides of the rectangle
2. What is the maximal area of a rectangle that can be inscribed in the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$? Sides of the rectangle should be parallel to coordinate axes.

Can you formulate and answer similar question for in 3 dimensions, for an ellipsoid?
3. Prove that for any $a, b, c>0$, we have

$$
(a+b)(b+c)(a+c) \geq 8 a b c
$$

4. Prove that $n!<\left(\frac{n+1}{2}\right)^{n}$ for all $n>1$.
5. let $g=\sqrt[n]{a_{1} \ldots a_{n}}$ be the geometric mean of positive numbers a_{1}, \ldots, a_{n}. Prove that

$$
\left(1+a_{1}\right) \ldots\left(1+a_{n}\right) \geq(1+g)^{n}
$$

Hint: observe that when all a_{i} are equal, the inequality becomes an equality. Use that and AMGM inequality to show that if we move away from this value by changing any pair (say a_{1}, a_{2}) while keeping the geometric mean unchanged, the left-hand side will increase.
6. Let us call a function $f(x)$ convex if, for any values a, b, the segment connecting points on the graph of f, namely $(a, f(a))$ and $(b, f(b))$, is above or coincides with the graph of f, but never goes below it.

For example, it is geometrically obvious (and can be proved algebraically) that the power function $f(x)=x^{k}$ is convex for non-negative x for $k \geq 1$, and also for $k<0-$ in particular, function $1 / x$ is convex for $x>0$.
(a) Show that for a convex function,

$$
\frac{f(a)+f(b)}{2} \geq f\left(\frac{a+b}{2}\right)
$$

(b) Deduce the AM-GM inequality for 2 variables from the fact that the function $f(x)=x^{2}$ is convex.
(c) Prove that the maximal value of a convex function on any interval $[a, b]$ is achieved at one of endpoints.
(d) Apply the previous part to function $f(x)=1 / x$ to prove that for any $a, b, c \in[0,1]$, one has

$$
\frac{a}{b+c+1}+\frac{b}{c+a+1}=\frac{c}{a+b+1}+(1-a)(1-b)(1-c) \leq 1
$$

Hint: if we fix a, b, for which value of c is this expression maximized?

