INEQUALITIES 2

OCTOBER 31, 2021

Recall the Arithmetic Mean - Geometric Mean inequality.
Theorem. If x_{1}, \ldots, x_{n} are non-negative real numbers, then

$$
\frac{x_{1}+\cdots+x_{n}}{n} \geq \sqrt[n]{x_{1} \ldots x_{n}}
$$

with equality if and only if all x_{i} are equal.
Today we also discussed another inequality, Cauchy inequality.
Theorem. Let

$$
\begin{aligned}
& \mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \\
& \mathbf{y}=\left(y_{1}, \ldots, y_{n}\right)
\end{aligned}
$$

be two sequences of real numbers, of same length. Then

$$
\left|\sum x_{i} y_{i}\right| \leq\|\mathbf{x}\| \cdot\|\mathbf{y}\|
$$

where

$$
\|\mathbf{x}\|=\sqrt{\sum x_{i}^{2}}
$$

and similar for \mathbf{y}.
Proof of this inequality is given in Problem 4 below.

Problems

1. Warm-up exercise:
(a) Prove that for any positive x,

$$
x+\frac{1}{x} \geq 2
$$

(b) Find the minimal value of $x+\frac{1}{2 x}$
2. Let $a, b, c>0$. Prove that then, $a^{2}+b^{2}+c^{2} \geq a b+b c+a c$
3. Let $a, b, c>0$. Prove that then,

$$
\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b} \geq \frac{3}{2}
$$

4. Prove Cauchy inequality, using the following idea.

Show that the quantity

$$
p(t)=\sum\left(x_{i}+t y_{i}\right)^{2}
$$

is a quadratic polynomial in t and that the discriminant of this polynomial is ≤ 0. Deduce from this Cauchy inequality.
5. Find the maximal value of the function $2 x+y+3 z$ on the unit sphere, i.e. the set of points (x, y, z) satisfying $x^{2}+y^{2}+z^{2}=1$.

