MATH CLUB: POLYNOMIALS

MARCH 27, 2022

SOME USEFUL FACTS ABOUT POLYNOMIALS

- Long division: given polynomials $f(x), g(x)$ (with degree of $g(x)$ at least 1), one can uniquely write $f(x)$ in the form

$$
f(x)=q(x) g(x)+r(x), \quad \operatorname{deg} r(x)<\operatorname{deg} g(x)
$$

Polynomials $q(x), r(x)$ are called quotient and remainder resepctively.

- Bezout theorem: when a polynomial $P(x)$ is divided by $(x-c)$, the remainder is $P(c)$. In particular, $P(x)$ is divisible by $(x-c)$ if and only if c is a root, i.e. $P(c)=0$.

Moreover, if $P(x)$ has integer coefficients and c is an integer root, then $P(x)$ is divisible by $(x-c)$ and the quotient has integer coefficients.

Vieta formulas

Suppose that we have a polynomial of degree n with leading coefficient 1 which has been completely factored:

$$
p(x)=x^{n}+a_{1} x^{n-1}+\cdots+a_{n}=\left(x-x_{1}\right) \ldots\left(x-x_{n}\right)
$$

(thus, the roots of $p(x)$ are $\left.x_{1}, \ldots, x_{n}\right)$.
Then one can express the coefficients a_{1}, \ldots, a_{n} in terms of roots x_{1}, \ldots, x_{n} :

$$
\begin{aligned}
a_{1} & =-\left(x_{1}+x_{2}+\cdots+x_{n}\right), \\
a_{2} & =x_{1} x_{2}+\ldots \quad \text { (sum of products of all distinct pairs of roots) } \\
a_{3} & =-x_{1} x_{2} x_{3}+\ldots \quad \text { (sum of products of all distinct triples of roots) } \\
& \ldots \\
a_{n} & =(-1)^{n} x_{1} \ldots x_{n}
\end{aligned}
$$

These are called Vieta formulas. For $n=2$, they become the usual formulas for quadratic equation: if $p(x)=x^{2}+p x+q=\left(x-x_{1}\right)\left(x-x_{2}\right)$, then $p=-\left(x_{1}+x_{2}\right), q=x_{1} x_{2}$.

Note that each of a_{i} is a symmetric expression in x_{1}, \ldots, x_{n} : if one permutes x_{1}, \ldots, x_{n}, the value of a_{i} doesn't change. In fact, it is also known that conversely, any symmetric polynomial of x_{1}, \ldots, x_{n} can be expressed in terms of a_{i}.

Problems

1. Find the remainder when $x^{13}+1$ is divided by $x-1$
2. The polynomial $P(x)$ has remainder 99 when divided by $x-19$ and remainder 19 when divided by $x-99$. What is the remainder when $P(x)$ is divided by $(x-19)(x-99)$?
*3. Does there exist a polynomial with integer coefficients $P(x)$ such that for every integer $n, P(n)$ is a prime number?
3. Let x_{1}, x_{2} be roots of the equation $x^{2}+13 x-7=0$. Find
(a) $x_{1}+x_{2}$
(b) $\frac{1}{x_{1}}+\frac{1}{x_{2}}$
(c) $x_{1}^{2}+x_{2}^{2}$
(d) $x_{1}^{3}+x_{2}^{3}$
4. (2003 AMC 10A \#18) What is the sum of the reciprocals of the roots of the equation

$$
\frac{2003}{2004} x+1+\frac{1}{x}=0
$$

6. (2005 AMC 10B \#16) The quadratic equation $x^{2}+m x+n=0$ has roots that are twice those of $x^{2}+p x+m=0$, and none of m, n, p is zero. What is the value of $n / p ?$
7. (2006 AMC 10B \#14) Let a and b be the roots of the equation $x^{2}-m x+2=0$. Suppose that $a+(1 / b)$ and $b+(1 / a)$ are the roots of the equation $x^{2}-p x+q=0$. What is q ?
8. (2001 AMC $12 \# 19$) The polynomial $P(x)=x^{3}+a x^{2}+b x+c$ has the property that the mean of its zeros, the product of its zeros, and the sum of its coefficients are all equal. The y-intercept of the graph of $y=P(x)$ is 2 . What is b ?
9. One of the roots of equation $x^{3}-6 x^{2}+a x-6=0$ is equal to 3 . Find the other two roots.
10. Solve the system of equations:

$$
\begin{aligned}
x+y+z & =6 \\
\frac{1}{x}+\frac{1}{y}+\frac{1}{z} & =\frac{11}{6} \\
x y+x z+y z & =11
\end{aligned}
$$

11. (1983 AIME) What is the product of the real roots of the equation

$$
x^{2}+18 x+30=\sqrt{x^{2}+18 x+45}
$$

12. (1984 USAMO) The product of two of the four zeros of the quartic equation

$$
x^{4}-18 x^{3}+k x^{2}+200 x-1984=0
$$

is -32 . Find k.

