MATH CLUB: SYMMETRIC POLYNOMIALS

APRIL 2, 2022

VIETA FORMULAS AND SYMMETRIC POLYNOMIALS

Suppose that we have a polynomial of degree n with leading coefficient 1 which has been completely factored:

$$p(x) = x^n + a_1 x^{n-1} + \dots + a_n = (x - x_1) \dots (x - x_n)$$

(thus, the roots of p(x) are x_1, \ldots, x_n).

Then one can express the coefficients a_1, \ldots, a_n in terms of roots x_1, \ldots, x_n :

 $a_1 = -(x_1 + x_2 + \dots + x_n),$ $a_2 = x_1 x_2 + \dots \qquad \text{(sum of products of all distinct pairs of roots)}$ $a_3 = -x_1 x_2 x_3 + \dots \qquad \text{(sum of products of all distinct triples of roots)}$ \dots $a_n = (-1)^n x_1 \dots x_n$

These are called *Vieta formulas*. For n = 2, they become the usual formulas for quadratic equation: if $p(x) = x^2 + px + q = (x - x_1)(x - x_2)$, then $p = -(x_1 + x_2)$, $q = x_1x_2$.

Note that each of a_i is a symmetric expression in x_1, \ldots, x_n : if one permutes x_1, \ldots, x_n in any way, the value of a_i doesn't change. In fact, converse is also true:

Theorem. Let $p(x_1, \ldots, x_n)$ be a polynomial with complex coefficients which is unchanged under any permutation of variables x_1, \ldots, x_n (such polynomials are called symmetric). Then p can be written as polynomial of a_1, \ldots, a_n defined above.

For example, for n = 2, if we take $p(x_1, x_2) = x_1^2 + x_2^2$, we can write

$$p = x_1^2 + x_2^2 = (x_1 + x_2)^2 - 2x_1x_2 = a_1^2 - 2a_2$$

where $a_1 = -(x_1 + x_2), a_2 = x_1 x_2$.

Problems

1. If a + b + c + d = 2 and $a^{-1} + b^{-1} + c^{-1} + d^{-1} = 2$, prove that

$$\frac{1}{1-a} + \frac{1}{1-b} + \frac{1}{1-c} + \frac{1}{1-d} = 2$$

2. x, y, z are integers such that x + y + z = 0. Prove that then, $2(x^4 + y^4 + z^4)$ is a square.

3. We are given three **positive** real numbers a, b, c such that abc = 1 and

$$a + b + c > \frac{1}{a} + \frac{1}{b} + \frac{1}{c}$$

Prove that exactly one of three numbers a, b, c is greater than 1.

[Hint: look at polynomial p(x) = (x - a)(x - b)(x - c). What can you say about p(1) ?]

- 4. Consider the equation $(z + 1)^n = (z 1)^n$. How many complex solutions does it have? What is the sum of squares of all the solutions?
- **5.** Let s_2 be the following symmetric polynomial in x_1, \ldots, x_n

$$s_2 = x_1^2 + x_2^2 + \dots + x_n^2$$

Express s_2 in terms of elementary symmetric polynomials a_1, \ldots, a_n .

6. Let s_3 be the following symmetric polynomial in x_1, \ldots, x_n

$$s_3 = x_1^3 + x_2^3 + \dots + x_n^3$$

Express s_3 in terms of elementary symmetric polynomials a_1, \ldots, a_n .

Can you try and get a general formula for $s_k = \sum x_i^k$? Or at least argue why this formula would be the same for all n?

7. Let

 $f(x) = (x - x_1)(x - x_2) = x^2 + px + q,$ $p = -(x_1 + x_2),$ $q = x_1x_2$

- Consider the following polynomial in x_1, x_2 : $D = (x_1 x_2)^2$.
- (a) Show that D is symmetric, i.e. it is unchanged when we permute x_1, x_2 .
- (b) Show that f(x) has a double root if and only if D = 0.
- (c) Express D as a polynomial of p, q.
- This problem explains why D naturally appears in the quadratic formula.
- *8. This is analog of the previous problem for a cubic polynomial. Let f(x) be a cubic polynomial; for simplicity, we only consider the case when the sum of roots is zero:

 $f(x) = (x - x_1)(x - x_2)(x - x_3) = x^3 + px + q, \qquad x_1 + x_2 + x_3 = 0, \quad p = x_1 x_2 + x_1 x_3 + x_2 x_3, \quad q = -x_1 x_2 x_3$ Consider the following polynomial in x_1, x_2, x_3 :

$$D = \left((x_1 - x_2)(x_1 - x_3)(x_2 - x_3) \right)^2$$

- (a) Show that D is symmetric, i.e. it is unchanged when we permute x_1, x_2, x_3 .
- (b) Show that f(x) has a multiple root if and only if D = 0.
- (c) Express D as a polynomial of p, q.