MATH CLUB: SYMMETRIC POLYNOMIALS

APRIL 2, 2022

Vieta formulas and symmetric polynomials

Suppose that we have a polynomial of degree n with leading coefficient 1 which has been completely factored:

$$
p(x)=x^{n}+a_{1} x^{n-1}+\cdots+a_{n}=\left(x-x_{1}\right) \ldots\left(x-x_{n}\right)
$$

(thus, the roots of $p(x)$ are $\left.x_{1}, \ldots, x_{n}\right)$.
Then one can express the coefficients a_{1}, \ldots, a_{n} in terms of roots x_{1}, \ldots, x_{n} :

$$
\begin{aligned}
a_{1} & =-\left(x_{1}+x_{2}+\cdots+x_{n}\right), \\
a_{2} & =x_{1} x_{2}+\ldots \quad \text { (sum of products of all distinct pairs of roots) } \\
a_{3} & =-x_{1} x_{2} x_{3}+\ldots \quad \text { (sum of products of all distinct triples of roots) } \\
& \ldots \\
a_{n} & =(-1)^{n} x_{1} \ldots x_{n}
\end{aligned}
$$

These are called Vieta formulas. For $n=2$, they become the usual formulas for quadratic equation: if $p(x)=x^{2}+p x+q=\left(x-x_{1}\right)\left(x-x_{2}\right)$, then $p=-\left(x_{1}+x_{2}\right), q=x_{1} x_{2}$.

Note that each of a_{i} is a symmetric expression in x_{1}, \ldots, x_{n} : if one permutes x_{1}, \ldots, x_{n} in any way, the value of a_{i} doesn't change. In fact, converse is also true:

Theorem. Let $p\left(x_{1}, \ldots, x_{n}\right)$ be a polynomial with complex coefficients which is unchanged under any permutation of variables x_{1}, \ldots, x_{n} (such polynomials are called symmetric). Then p can be written as polynomial of a_{1}, \ldots, a_{n} defined above.

For example, for $n=2$, if we take $p\left(x_{1}, x_{2}\right)=x_{1}^{2}+x_{2}^{2}$, we can write

$$
p=x_{1}^{2}+x_{2}^{2}=\left(x_{1}+x_{2}\right)^{2}-2 x_{1} x_{2}=a_{1}^{2}-2 a_{2}
$$

where $a_{1}=-\left(x_{1}+x_{2}\right), a_{2}=x_{1} x_{2}$.

Problems

1. If $a+b+c+d=2$ and $a^{-1}+b^{-1}+c^{-1}+d^{-1}=2$, prove that

$$
\frac{1}{1-a}+\frac{1}{1-b}+\frac{1}{1-c}+\frac{1}{1-d}=2 .
$$

2. x, y, z are integers such that $x+y+z=0$. Prove that then, $2\left(x^{4}+y^{4}+z^{4}\right)$ is a square.
3. We are given three positive real numbers a, b, c such that $a b c=1$ and

$$
a+b+c>\frac{1}{a}+\frac{1}{b}+\frac{1}{c}
$$

Prove that exactly one of three numbers a, b, c is greater than 1.
[Hint: look at polynomial $p(x)=(x-a)(x-b)(x-c)$. What can you say about $p(1)$?]
4. Consider the equation $(z+1)^{n}=(z-1)^{n}$. How many complex solutions does it have? What is the sum of squares of all the solutions?
5. Let s_{2} be the following symmetric polynomial in x_{1}, \ldots, x_{n}

$$
s_{2}=x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}
$$

Express s_{2} in terms of elementary symmetric polynomilas a_{1}, \ldots, a_{n}.
6. Let s_{3} be the following symmetric polynomial in x_{1}, \ldots, x_{n}

$$
s_{3}=x_{1}^{3}+x_{2}^{3}+\cdots+x_{n}^{3}
$$

Express s_{3} in terms of elementary symmetric polynomilas a_{1}, \ldots, a_{n}.
Can you try and get a general formula for $s_{k}=\sum x_{i}^{k}$? Or at least argue why this formula would be the same for all n ?
7. Let

$$
f(x)=\left(x-x_{1}\right)\left(x-x_{2}\right)=x^{2}+p x+q, \quad p=-\left(x_{1}+x_{2}\right), \quad q=x_{1} x_{2}
$$

Consider the following polynomial in $x_{1}, x_{2}: D=\left(x_{1}-x_{2}\right)^{2}$.
(a) Show that D is symmetric, i.e. it is unchanged when we permute x_{1}, x_{2}.
(b) Show that $f(x)$ has a double root if and only if $D=0$.
(c) Express D as a polynomial of p, q.

This problem explains why D naturally appears in the quadratic formula.
*8. This is analog of the previous problem for a cubic polynomial. Let $f(x)$ be a cubic polynomial; for simplicity, we only consider the case when the sum of roots is zero:
$f(x)=\left(x-x_{1}\right)\left(x-x_{2}\right)\left(x-x_{3}\right)=x^{3}+p x+q, \quad x_{1}+x_{2}+x_{3}=0, \quad p=x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3}, \quad q=-x_{1} x_{2} x_{3}$
Consider the following polynomial in x_{1}, x_{2}, x_{3} :

$$
D=\left(\left(x_{1}-x_{2}\right)\left(x_{1}-x_{3}\right)\left(x_{2}-x_{3}\right)\right)^{2}
$$

(a) Show that D is symmetric, i.e. it is unchanged when we permute x_{1}, x_{2}, x_{3}.
(b) Show that $f(x)$ has a multiple root if and only if $D=0$.
(c) Express D as a polynomial of p, q.

