## MATH 10

## ASSIGNMENT 6: CROSS-PRODUCT

NOV 7, 2021

Signed area: REVIEW
Recall that we had defined "wedge product" of two vectors in the plane by

$$
\begin{equation*}
\mathbf{v} \wedge \mathbf{w}=x_{1} y_{2}-y_{1} x_{2} \in \mathbb{R} \tag{1}
\end{equation*}
$$

One can think of $\mathbf{v} \wedge \mathbf{w}$ as "signed area":

$$
\mathbf{v} \wedge \mathbf{w}= \begin{cases}S_{A B C D}, & \text { if rotation from } \mathbf{v} \text { to } \mathbf{w} \text { is counterclockwise } \\ -S_{A B C D}, & \text { if rotation from } \mathbf{v} \text { to } \mathbf{w} \text { is clockwise }\end{cases}
$$



The wedge product (and thus, the signed area) is in many ways easier than the usual area. Namely, we have:

1. It is linear: $\left(\mathbf{v}_{1}+\mathbf{v}_{2}\right) \wedge \mathbf{w}=\mathbf{v}_{1} \wedge \mathbf{w}+\mathbf{v}_{2} \wedge \mathbf{w}$
2. It is anti-symmetric: $\mathbf{v} \wedge \mathbf{w}=-\mathbf{w} \wedge \mathbf{v}$

## Cross-product

If $\mathbf{v}, \mathbf{w}$ are two vectors in $\mathbb{R}^{3}$, then we can define a different kind of product, called the cross-product, which is a vector in $\mathbb{R}^{3}$, defined by

$$
\left[\begin{array}{l}
x_{1} \\
y_{1} \\
z_{1}
\end{array}\right] \times\left[\begin{array}{l}
x_{2} \\
y_{2} \\
z_{2}
\end{array}\right]=\left[\begin{array}{l}
y_{1} z_{2}-z_{1} y_{2} \\
z_{1} x_{2}-x_{1} z_{2} \\
x_{1} y_{2}-y_{1} x_{2}
\end{array}\right]
$$

For example, if $\mathbf{v}, \mathbf{w}$ are vectors in the $x y$ plane, then $\mathbf{v} \times \mathbf{w}$ is a vector along the direction of the $z$-axis.
The cross-product has several important properties:

1. It is linear in $\mathbf{v}$, $\mathbf{w}:\left(\mathbf{v}^{\prime}+\mathbf{v}^{\prime \prime}\right) \times \mathbf{w}=\mathbf{v}^{\prime} \times \mathbf{w}+\mathbf{v}^{\prime \prime} \times \mathbf{w}$, and similarly for $\mathbf{w}$
2. It is skew-symmetric: $\mathbf{v} \times \mathbf{w}=-\mathbf{w} \times \mathbf{v}$
3. $|\mathbf{v} \times \mathbf{w}|=$ area of the parallelogram with sides $\mathbf{v}, \mathbf{w}$
4. $\mathbf{v} \times \mathbf{w}$ is perpendicular to the plane containing $\mathbf{v}, \mathbf{w}$
5. The direction of $\mathbf{v} \times \mathbf{w}$ is determined by so-called right hand rule:


Thus, if $\mathbf{v}$ is along positive direction of $x$ axis, and $\mathbf{w}$ is in the positive direction of $y$-axis, then $\mathbf{v} \times \mathbf{w}$ will be in the positive direction of the $z$-axis.

1. Check that if $\mathbf{i}, \mathbf{j}, \mathbf{k}$ are unit vectors along positive directions of $x, y, z$ axes respectively, then

$$
\mathbf{i} \times \mathbf{j}=\mathbf{k}
$$

and similar for the cyclic permutations of these three vectors: $\mathbf{j} \times \mathbf{k}=\mathbf{i}, \mathbf{k} \times \mathbf{i}=\mathbf{j}$
2. Use explicit computation to check that if $\mathbf{u}=\mathbf{v} \times \mathbf{w}$, then $\mathbf{u} \cdot \mathbf{v}=\mathbf{u} \cdot \mathbf{w}=0$.
3. (a) Use cross-product to construct a vector perpendicular to both of the vectors below:

$$
\left[\begin{array}{l}
1 \\
0 \\
2
\end{array}\right], \quad\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

(b) Write the equation of the plane through points $(0,0,0),(1,0,2),(1,1,1)$.
4. Show that if all vertices of a triangle in a plane have integer coordinates, then its area $A$ is a halfinteger (i.e., $2 A \in \mathbb{Z}$ ). Is the same true for any polygon?
5. For three vectors $\mathbf{u}, \mathbf{v}, \mathbf{w}$ in $\mathbb{R}^{3}$, define the triple product $T(\mathbf{u}, \mathbf{v}, \mathbf{w})$ by the formula

$$
T(\mathbf{u}, \mathbf{v}, \mathbf{w})=(\mathbf{v} \times \mathbf{w}) \cdot \mathbf{u}
$$

(note that it is a number, not a vector). The notation $T$ is not standard.
(a) Write an explicit formula the triple product in terms of $x, y$, and $z$ components of $\mathbf{u}, \mathbf{v}, \mathbf{w}$.
(b) Check that the triple product is linear in each of the three vectors and is skew-symmetric:

$$
T(\mathbf{u}, \mathbf{v}, \mathbf{w})=-T(\mathbf{v}, \mathbf{u}, \mathbf{w})
$$

and similarly for any other interchange of any two of the three vectors.
(c) Show that for a parallelepiped $P$ with edges given by vectors $\mathbf{u}, \mathbf{v}, \mathbf{w}$, its volume is given by

$$
V_{P}=|T(\mathbf{u}, \mathbf{v}, \mathbf{w})|
$$

6. What is the volume of a tetrahedron with vertices $A=(0,0,0), B=\left(x_{1}, y_{1}, z_{1}\right), C=\left(x_{2}, y_{2}, z_{2}\right)$, $D=\left(x_{3}, y_{3}, z_{3}\right)$ ?
