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Review of last time

Recall that we can systematically represent a system of linear equations

a11x1 + a12x2 + . . .+ a1nxn = b1

a21x1 + a22x2 + . . .+ a2nxn = b2

...

am1x1 + am2x2 + . . .+ amnxn = bm

in terms of its augmented matrix

A|b =


a11 a12 . . . a1n | b1
a21 a22 . . . a2n | b2
...

...
. . .

... |
...

am1 am2 . . . amn | bm

 .

Using elementary row transformations, such an augmented matrix can be brought to the ‘row echelon form”,
where each row begins with some number of zeroes, and each next row has more zeroes than the previous
one: X ∗ ∗ ∗ ∗ ∗ ∗ | ∗

0 0 0 X ∗ ∗ ∗ | ∗
0 0 0 0 X ∗ ∗ | ∗


(here X’s stand for non-zero entries).

To solve such a system, we do the following:

• Variables corresponding to columns with X’s in them are called pivot variables; the remaining ones
are called free variables.

• Values for free variables can be chose arbitrarily. Values for pivot variables are then uniquely deter-
mined from the equations.

For example, in the system

(1)
x1 + x2 + x3 = 5

x2 + 3x3 = 6

varaibles x1, x2 are pivot, and variable x3 is free, so we can solve it by letting x3 = t, and then

x2 = 6− 3x3 = 6− 3t

x1 = 5− x2 − x3 = −1 + 2t

Systems with no solutions

It could happen that a system of linear equations has no solutions. For example, if the augmented matrix
is [

1 1 | 2
0 0 | 1

]
then the second equation reads 0 · x1 + 0 · x2 = 1, which clearly has no solutions. It happens if in the row
echelon form, there is an row which has all zero entries except the last one (corresponding to the right hand
side of the equation), which is non-zero.



Lines and planes in R3

As we saw before, a single linear equation ax1+bx2+cx3 = d describes a plane perpendicular to the vector
(a, b, c) in R3 (we assume that at least one of a, b, c is non-zero). If we use our system of linear equation
techniques to solve this equation, we obtain something of the form

x = a+ t1v1 + t2v2,

where t1, t2 ∈ R are parameters which can take any real values and a,v1,v2 ∈ R3 are some fixed vectors
found by solving the equation. This is the parametric definition of a plane.

Likewise, the parametric definition of a line in three-dimensional space is

x = a+ tv,

for some vectors a,v ∈ R3.

Vector Spaces

A real vector space is a set V together with two operations: vector addition

(2) V × V → V : (v,w) 7→ v +w

and multiplication by a scalar

(3) R× V → V : (a,v) 7→ av,

such that these operations satisfy the following properties hold:

u+ (v +w) = (u+ v) +w

u+ v = v + u

∃0 ∈ V : 0+ v = v,∀v ∈ V

∀v ∈ V ∃ − v ∈ V : v + (−v) = 0

a(bv) = (ab)v

1v = v,∀v
a(u+ v) = au+ av

(a+ b)v = av + bv.

Examples

I. The standard example is geometric vectors (arrows) in the plane or in Euclidean space. Addition is given
by the parallelogram rule, and multiplication by a scalar by changing the length of the vector (and changing
the direction if the number is negative).

Figure 1. Vector addition in coordinates.



II. Rn, the set of n-tuples of real numbers x1, x2, . . . , xn. We will write them as a column of numbers:

x =


x1

x2

...
xn


And the operations of addition of vectors and multiplication by numbers are

x1

x2

...
xn

+


y1
y2
...
yn

 =


x1 + y1
x2 + y2

...
xn + yn



c


x1

x2

...
xn

 =


cx1

cx2

...
cxn

 , c ∈ R

III. M[m,n], the space of matrices of order [m,n], is a generalization of the above concept: an array with
m lines and n columns of the form: 

a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn

 .

Sum of matrices of the same order and multiplication by a number are defined in analogy to the operations
on Rn defined above.

IV. Polynomials in one variable of degree n (see problem ).
By extending the ideas from the previous section, we will also refer to points of Rn as vectors (starting

at the origin and ending at this point).

Basis Vectors

We commonly use coordinates to work with vectors. This is based on the fact that, given any two fixed
noncolinear vectors e⃗1, e⃗2 (called basis vectors), we can write all vectors a⃗ in the plane as a⃗ = a1e⃗1 + a2e⃗2
for some components (a1, a2). In terms of the components (called coordinates), we have

(4) a⃗+ b⃗ = (a1e⃗1 + a2e⃗2) + (b1e⃗1 + b2e⃗2) = (a1 + b1)e⃗1 + (a2 + b2)e⃗2

(see fig.1) and

(5) ca⃗ = c(a1e⃗1 + a2e⃗2) = (ca1)e⃗1 + (ca2)e⃗2.

Thus this gives a correspondence between vectors in the plane with addition and multiplication by a number
as defined in I, and ordered pairs (x1, x2) ∈ R2 with the operations of addition and multiplication by numbers
as defined in II. The concept that relates the two is that of basis vectors. The same goes for 3-dimensional
vectors, which corresponds to R3.

Dimension

The number of vectors necessary and sufficient to form a basis is a property of the vector space, called the
dimension. From the previous point we see that vectors in the plane form a 2-dimensional vector space, and
vectors in the euclidean space form a 3-dimensional vector space. By using a basis, we can always identify
a vector space of dimension d with Rd just as we did above.

The idea of dimension is very important in solving systems of linear equations. If a system of linear
equations has solutions and has d free variables, it means that a general solution depends on the choice of d



numbers t1, . . . , td — the values of free variables. Moreover, in this case the general solution can be written
in the form

x = a+ t1v1 + · · ·+ tdvd

for some vectors a,v1, . . . ,vd ∈ Rn. In this case we say that the set of solutions has dimension d. It can be
shown that the dimension does not depend on how we brought the matrix to row echelon form.

For example, in the system

x1 + x2 + x3 = 5

x2 + 3x3 = 6

the general solution is

x =

[
−1 + 2t
6− 3t

]
=

[
−1
6

]
+ t

[
2
−3

]
so the space of solutions has dimension 1.

Theorem. If a system of linear equations has solutions, then the dimension of the space of solutions is given
by

d = (number of variables)− (number of nonzero rows in row echelon form)

Indeed, the number of free variables is the number of all variables minus the number of pivot variables.
Thus, typically we expect that a system with n variables and k equations has n − k dimensional space

of solutions. This is not always true: it could happen that after bringing it to row echelon form, some rows
become zero, or that the system has no solutions at all — but these situations are unusual (at least if k ≤ n).

Homework

1. Find a polynomial p(x) of degree 3 which satisfies the following conditions

p(0) = 5, p(1) = 2, p(−1) = 4, p(3) = −40.

2. Write the equation of a plane in R3 passing through the points (1, 0, 0), (0, 1, 0), (0, 0, 1). [Hint: if the
equation of the plane is ax1 + bx2 + cx3 = d, then plugging in it each of the points gives a condition
on a, b, c, d; this gives a system of linear equations.]

Is such a plane unique?

3. Let P be the plane in R3 described parametrically as the set of all points of the form

x = t1

 1
0
−1

+ t2

11
1

 , t1, t2 ∈ R.

Write an equation of this plane. [Hint: find 3 points on this plane.]

4. Consider two planes 2x+3y− z = 0, 4x+ z = 4. Prove that their intersection is a line; write the line
in the parametric form, by writing a generic point in the line as x = a+ tv for some vector v.

5. Find the intersection of 3 planes

x+ 2y + 3z = 3

3x+ y + 2z = 3

2x+ 3y + z = 3

6. Prove that the operations of addition and multiplication by a scalar in the vector space Rn (example
II) satisfy all the properties outlined below equation (3).

7. The polynomials of degree n in one variable x form a vector space (look back at problem 1). Can
you find a basis? What is the dimension?

8. Consider the space of matrices with 2 lines and 3 columns M[2, 3]. Can you find a basis for this
space? What is the dimension? What about the general case M[m,n]?


