MATH 10

ASSIGNMENT 13: ACCUMULATION POINTS

JAN 16, 2022

REVIEW OF LAST CLASS

Given a point $x \in X$ and a positive real number ε , we define ε -neighborhood of x by

$$B_{\varepsilon}(x) = \{ y \in X \mid d(x, y) < \varepsilon \}.$$

For $X = \mathbb{R}$, neighborhoods are just open intervals: $B_{\varepsilon}(x) = (x - \varepsilon, x + \varepsilon)$

If $S \subset X$, denote by S' the complement of S. Then, for any $x \in X$, we can have one of three possibilities:

- 1. There is a neighborhood $B_{\varepsilon}(x)$ which is completely inside S (in paritcular, this implies that $x \in S$). Such points are called *interior points* of S; set of interior points is denoted by Int(S).
- **2.** There is a neighborhood $B_{\varepsilon}(x)$ which is completely inside S' (in paritcular, this implies that $x \in S'$). Thus, $x \in \text{Int}(S')$.
- **3.** Any neighborhood of x contains points from S and points from S' (in this case, we could have $x \in S$ or $x \in S'$). Set of such points is called the *boundary* of S and denoted ∂S .

Definition. A set S is called *open* if every point $x \in S$ is an interior point: S = Int(S).

A set S is called closed if $\partial S \subset S$.

Part of last week homework was to show that a set S is open if and only if its complement is closed.

ACCUMULATION POINTS

As before, all our constructions take place in some metric space X (such as \mathbb{R} , \mathbb{R}^2 , etc).

Definition. Let x_n be a sequence of points in X. We say that $A \in X$ is an accumulation point of x_n if each neighborhood of A contains infinitely many terms of the sequence.

For example, if $x_n = 1/n \in \mathbb{R}$, then point A = 0 is an accumulation point: in any neighborhood $(-\varepsilon, \varepsilon)$ there are infinitely many terms of the sequence (namely, all x_n with $n > 1/\varepsilon$).

Homework

- 1. Find all accumulation points of the following sequences:

 - (a) Sequence $x_n = \frac{1}{n}$ (b) Sequence $a_n = (-1)^n + \frac{1}{n}$: $a_1 = -1 + 1 = 0$, $a_2 = 1 + \frac{1}{2} = \frac{3}{2}$, $a_3 = -1 + \frac{1}{3} = -\frac{2}{3}$, ..., $a_{100} = 1 + \frac{1}{100}$, $a_{101} = -1 + \frac{1}{101}$,... (c) $x_n = n + 1/n$.
- 2. Is it possible to construct a sequence a_n of real numbers so that the set of its accumulation points is
 - (a) Set consisting of just two points $\{0,1\}$
 - (b) Empty set
 - (c) Interval [0,1] (Hint: make your sequence contain all rational numbers in this interval).
 - (d) Set $\mathbb{N} = \{1, 2, 3, \dots\}$.
- 3. (a) Let set S be the set of all irrational numbers satisfying inequality 0 < x < 1. Show that one can construct a sequence $x_n \in S$ which has A = 1 as one of its accumulation points.
 - (b) Show that for any set S and a point $A \in \partial S$, one can choose a sequence of elements of S which has A as one of its accumulation points.
- **4.** (a) Let $S = [0,1] \subset \mathbb{R}$. Is it possible to construct a sequence $x_n \in S$ such that it has A = 1.1 as an accumulation point?
 - (b) Show that for any sequence $x_n \in [0,1]$, all accumulation points of this sequence (if any) are in
 - (c) Show that if S is a closed set (and thus its complement is an open set), then for any sequence of elements of S, all its accumulation points are in S.

- (d) Give a counterexample to show that the statement of the previous part may fail if we do not assume that S is closed.
- *5. Is it possible to construct a sequence a_n so that the set of its accumulation points is the set of all rational numbers?

If possible, give a construction; if impossible, try to explain why.