MATH 10

ASSIGNMENT 13: ACCUMULATION POINTS

JAN 16, 2022

Review of last class

Given a point $x \in X$ and a positive real number ε, we define ε-neighborhood of x by

$$
B_{\varepsilon}(x)=\{y \in X \mid d(x, y)<\varepsilon\}
$$

For $X=\mathbb{R}$, neighborhoods are just open intervals: $B_{\varepsilon}(x)=(x-\varepsilon, x+\varepsilon)$
If $S \subset X$, denote by S^{\prime} the complement of S. Then, for any $x \in X$, we can have one of three possibilities:

1. There is a neighborhood $B_{\varepsilon}(x)$ which is completely inside S (in paritcular, this implies that $x \in S$). Such points are called interior points of S; set of interior points is denoted by $\operatorname{Int}(S)$.
2. There is a neighborhood $B_{\varepsilon}(x)$ which is completely inside S^{\prime} (in paritcular, this implies that $x \in S^{\prime}$). Thus, $x \in \operatorname{Int}\left(S^{\prime}\right)$.
3. Any neighborhood of x contains points from S and points from S^{\prime} (in this case, we could have $x \in S$ or $\left.x \in S^{\prime}\right)$. Set of such points is called the boundary of S and denoted ∂S.

Definition. A set S is called open if every point $x \in S$ is an interior point: $S=\operatorname{Int}(S)$.
A set S is called closed if $\partial S \subset S$.
Part of last week homework was to show that a set S is open if and only if its complement is closed.

Accumulation points

As before, all our constructions take place in some metric space X (such as $\mathbb{R}, \mathbb{R}^{2}$, etc).
Definition. Let x_{n} be a sequence of points in X. We say that $A \in X$ is an accumulation point of x_{n} if each neighborhood of A contains infinitely many terms of the sequence.

For example, if $x_{n}=1 / n \in \mathbb{R}$, then point $A=0$ is an accumulation point: in any neigborhood $(-\varepsilon, \varepsilon)$ there are infinitely many terms of the sequence (namely, all x_{n} with $n>1 / \varepsilon$).

Homework

1. Find all accumulation points of the following sequences:
(a) Sequence $x_{n}=\frac{1}{n}$
(b) Sequence $a_{n}=(-1)^{n}+\frac{1}{n}$: $a_{1}=-1+1=0, a_{2}=1+\frac{1}{2}=\frac{3}{2}, a_{3}=-1+\frac{1}{3}=-\frac{2}{3}, \ldots$, $a_{100}=1+\frac{1}{100}, a_{101}=-1+\frac{1}{101}, \ldots$
(c) $x_{n}=n+1 / n$.
2. Is it possible to construct a sequence a_{n} of real numbers so that the set of its accumulation points is
(a) Set consisting of just two points $\{0,1\}$
(b) Empty set
(c) Interval $[0,1]$ (Hint: make your sequence contain all rational numbers in this interval).
(d) Set $\mathbb{N}=\{1,2,3, \ldots\}$.
3. (a) Let set S be the set of all irrational numbers satisfying inequality $0<x<1$. Show that one can construct a sequence $x_{n} \in S$ which has $A=1$ as one of its accumulation points.
(b) Show that for any set S and a point $A \in \partial S$, one can choose a sequence of elements of S which has A as one of its accumulation points.
4. (a) Let $S=[0,1] \subset \mathbb{R}$. Is it possible to construct a sequence $x_{n} \in S$ such that it has $A=1.1$ as an accumulation point?
(b) Show that for any sequence $x_{n} \in[0,1]$, all accumulation points of this sequence (if any) are in $[0,1]$
(c) Show that if S is a closed set (and thus its complement is an open set), then for any sequence of elements of S, all its accumulation points are in S.
(d) Give a counterexample to show that the statement of the previous part may fail if we do not assume that S is closed.
*5. Is it possible to construct a sequence a_{n} so that the set of its accumulation points is the set of all rational numbers?

If possible, give a construction; if impossible, try to explain why.

