MATH 10

ASSIGNMENT 14: LIMITS

JANUARY 30, 2022

Limits

We say that a sequnce a_{n} has limit A if, as n increases, terms of the sequence get closer and closer to A. This definition is not very precise. For example, the terms of sequence $a_{n}=1 / n$ get closer and closer to 0 , so one expects that the limit is 0 . On the other hand, it is also true that they get closer and closer to -1 . So the words "closer and closer" is not a good way to express what we mean.

A better way to say this is as follows.
Definition. A set U is called a trap for the sequence a_{n} if, starting with some index N, all terms of the sequence are in this set:

$$
\exists N: \quad \forall n \geq N: a_{n} \in U
$$

Note that it is not the same as "infinitely many terms of the sequence are in this set".
Now we can give a rigorous definition of a limit.
Definition. A number A is called the limit of sequence a_{n} (notation: $A=\lim a_{n}$) if for any $\varepsilon>0$, the neighborhood $B_{\varepsilon}(A)=\{x \mid d(x, A)<\varepsilon\}$ is a trap for the sequence a_{n}.

For example, when we say that for a sequence $a_{n} \in \mathbb{R}, \lim a_{n}=3$, it means:
there is an index N such that for all $n \geq N$ we will have $a_{n} \in(2.99,3.01)$,
there is an index N^{\prime} (possibly different) such that for all $n \geq N^{\prime}$ we will have $a_{n} \in(2.999,3.001)$
there is an index $N^{\prime \prime}$ such that for all $n \geq N^{\prime \prime}$ we will have $a_{n} \in(3-0.0000001,3+0.0000001)$
......

Homework

1. Consider the sequence $a_{n}=1 / n\left(a_{1}=1, a_{2}=1 / 2, a_{3}=1 / 3, \ldots\right)$.
(a) Fill in the blanks in each of the statements below:

- For all $n \geq \ldots,\left|a_{n}\right|<0.1$
- For all $n \geq \ldots,\left|a_{n}\right|<0.001$
- For all $n \geq \ldots,\left|a_{n}\right|<0.00017$

Each one of these assertions implies that a certain set is a trap for the sequence $a_{n}=1 / n$. Write down these three sets.
(b) Show that $\lim a_{n}=0$.
2. Prove that $\lim \frac{1}{n(n+1)}=0$ (hint: $\frac{1}{n(n+1)}<\frac{1}{n}$).
3. Find the limits of the following sequences if they exist:
(a) $a_{n}=\frac{1}{n^{2}}$
(b) $a_{n}=\frac{1}{2^{n}}$
(c) $a_{n}=n$
4. Explain why the number 1 is NOT a limit of the sequence $(-1)^{n}$.
5. (a) Show that the limit of a sequence (if exists) is an accumulation point.
(b) Show that converse is not necessarily true: an accumulation point does not have to be a lmit.
(c) Show that if a sequence has two different accumulation points C, C^{\prime}, then it cannot have a limit.
6. Show that the set of accumulation points of a sequence is closed.
7. (a) Let S be a closed set (i.e., a set that contains all of its accumulation points, see problem 4.c) in Homework 13) and a_{n} a sequence such that $a_{n} \in S$ for any n. Prove that if the $\operatorname{limit} \lim a_{n}$ exists, it must be also in S.
(b) Let $a_{n} \geq 0$ for all n. Prove that then $\lim a_{n} \geq 0$ (assuming it exists).
(c) Let $a_{n}>0$ for all n. Is it true that then $\lim a_{n}>0$ (assuming it exists)?

