MATH 10

ASSIGNMENT 17: SERIES

FEB 27, 2022

SERIES

Given a sequence a_{n}, consider a new sequence

$$
\begin{aligned}
& S_{1}=a_{1} \\
& S_{2}=a_{1}+a_{2} \\
& S_{3}=a_{1}+a_{2}+a_{3} \\
& \cdots \\
& S_{n}=a_{1}+\cdots+a_{n}=\sum_{i=1}^{n} a_{i}
\end{aligned}
$$

If the sequence S_{1}, \ldots, S_{n} has a limit, we will write

$$
\sum_{i=1}^{\infty} a_{i}=\lim S_{n}
$$

and call it the sum of the infinite series. In such a situation we say that the infinite series $\sum_{1}^{\infty} a_{n}$ converges.
For example:

$$
1+r+r^{2}+\cdots=\sum_{i=0}^{\infty} r^{i}=\frac{1}{1-r}, \quad|r|<1
$$

Note that it is quite possible that the sequence a_{n} converges but the series $\sum_{1}^{\infty} a_{n}$ does not converge!

Problems

1. Prove that if the series $\sum_{1}^{\infty} a_{n}$ converges, i.e. the $\operatorname{limit} \lim S_{n}$ exists, then $\lim a_{n}=0$. [Hint: $\left.a_{n}=S_{n}-S_{n-1}.\right]$
2. Prove that if $0 \leq a_{n} \leq b_{n}$, then
(a) $\sum_{i=1}^{n} a_{i} \leq \sum_{i=1}^{n} b_{i}$
(b) If the series $\sum_{i=1}^{\infty} b_{i}$ converges: $\sum_{i=1}^{\infty} b_{i}=B$, then the series $\sum_{i=1}^{\infty} a_{i}$ also converges, and $\sum_{i=1}^{\infty} a_{i} \leq B$. [Hint: show that $S_{n}=\sum_{i=1}^{n} a_{i}$ is a bounded increasing sequence.]
3.

(a) Prove that the series $\sum \frac{1}{n(n+1)}$ converges and find the sum.
(b) Use the previous problem to prove that the series $\sum \frac{1}{n^{2}}$ converges.
[This problem is essentially a repetition of the last problem in the previous HW.]
4. Prove that the harmonic series:

$$
1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\ldots
$$

does not converge. Hint: group the terms as follows:

$$
1+\left(\frac{1}{2}\right)+\left(\frac{1}{3}+\frac{1}{4}\right)+\left(\frac{1}{5}+\cdots+\frac{1}{8}\right) \cdots
$$

and show that the sum of terms inside each parentheses is $\geq 1 / 2$.
5. Prove that the series

$$
1+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\ldots
$$

converges, by noticing that $\frac{1}{n!} \leq \frac{1}{2^{n-1}}$.
The value of this series is denoted by letter e and is at least as important in math as the number π :

$$
e=\sum_{n=0}^{\infty} \frac{1}{n!} \approx 2.718281828 \ldots
$$

(where we use the convention $0!=1$)

