MATH 10

ASSIGNMENT 18: SERIES CONTINUED

MAR 6, 2022

Series

Recall: given a sequence a_{n}, we define

$$
\begin{aligned}
& \sum_{i=1}^{\infty} a_{i}=\lim S_{n}, \quad \text { where } \\
& S_{n}=a_{1}+\cdots+a_{n}=\sum_{i=1}^{n} a_{i}
\end{aligned}
$$

(if this limit exists; otherwise we say that the series diverges and expression $\sum_{i=1}^{\infty} a_{i}$ is meaningless). For example:

$$
1+r+r^{2}+\cdots=\sum_{i=0}^{\infty} r^{i}=\lim \frac{1-r^{n+1}}{1-r}=\frac{1}{1-r}, \quad|r|<1
$$

(this series is called the geometric series).
Note that it is quite possible that the sequence a_{n} converges but the sequence S_{n} of partial sums does not converge and thus the series $\sum_{i=1}^{\infty} a_{i}$ diverges!!

In the last HW, we have proved the following facts.

Theorem.

1. If a series $\sum a_{n}$ converges, then $\lim a_{n}=0$. (Converse is not true: even if $\lim a_{n}=0$, the series may diverge).
2. If $0 \leq a_{n} \leq b_{n}$, and $\sum b_{n}$ converges, then $\sum a_{n}$ also converges.

In fact, there is a more general result:
Theorem (Comparison test). If a_{n}, b_{n} are sequences such that $b_{n} \geq 0,\left|a_{n}\right| \leq b_{n}$ and the series $\sum_{1}^{\infty} b_{n}$ converges, then $\sum_{1}^{\infty} a_{n}$ also converges.

The proof of this result will be given later.

Homework

1. A tortoise is moving on the plane starting at the origin and then going 1 unit along the positive direction of x axis; then turning 90° to the left and going for 0.9 units, then turning 90° to the left and going for $(0.9)^{2}$ units, then....
(a) Show that if we consider the plane as the complex plane \mathbb{C}, then the position of the tortoise after n steps will be at the point $1+r+r^{2}+\cdots+r^{n-1}$, where $r=0.9 i$.
(b) Find where the tortoise will end up in the limit, after infinitely many steps.
2. Let a_{n} be a sequence such that $r=\lim \frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}$ exists.
(a) Show that if $r>1$, then $\lim a_{n}$ does not exists, and therefore $\sum_{1}^{\infty} a_{n}$ diverges (compare with Problem 1 from previous HW).
(b) Prove that if $r<1$, then the series $\sum_{1}^{\infty} a_{n}$ converges. [Hint: compare with geometric series.]
(c) Give examples showing that if $r=1$, then series $\sum_{1}^{\infty} a_{n}$ may converge or diverge.

This is known as the ratio test for series convergence.
3. Prove that for any $x \in \mathbb{C}$, the series

$$
E(x)=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}
$$

converges. [Hint: use the previous problem.]
4. Let $E(x)$ be as defined in the previous problem. Prove that then $E(x+y)=E(x) E(y)$. [Hint: both sides can be written as "double series" $\sum a_{m, n} x^{n} y^{m}$. You can use without a proof that in all the series involved, rearranging the terms in any order will not affect the value of the series.]
5. Let $e=\sum_{n=0}^{\infty} \frac{1}{n!}=E(1)$. Prove that then $E(x)=e^{x}$:
(a) For all integer x
(b) For all rational $x=p / q$
*(c) For all real x

