MATH 10
 ASSIGNMENT 19: CONTINUOUS FUNCTIONS

MAR 13, 2022

Definition. A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is called continuous if, for every sequence $a_{n} \in \mathbb{R}$ which has a limit: $\lim a_{n}=A \in \mathbb{R}$, the sequence $f\left(a_{n}\right)$ also has a limit and $\lim f\left(a_{n}\right)=f(A)$.

For example, function $f(x)=x$ is continuous, while the function

$$
f(x)= \begin{cases}0, & x<0 \\ 1, & x \geq 0\end{cases}
$$

is not (see Problem 1 below)
Instead of functions $f: \mathbb{R} \rightarrow \mathbb{R}$, the same definition can be applied to functions between other sets: if X, Y are metric spaces (i.e., have sets with the notion of distance, satisfying all required properties), then the above definition works without any changes for functions $f: X \rightarrow Y$. For example, we can talk about continuous functions on an interval $[0,1]$ or on the set \mathbb{R}_{+}of positive real numbers. Note that in the latter case we only require that $f\left(a_{n}\right)$ converge for a sequence $a_{n} \in \mathbb{R}_{+}$which has a limit also in \mathbb{R}_{+}. For example, we do not require that $f(1 / n)$ converge.

Homework

1. Prove that the function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by

$$
f(x)= \begin{cases}0, & x<0 \\ 1, & x \geq 0\end{cases}
$$

is not continuous.
2. Prove that the function $f(x)=x^{2}+1$ is continuous.
3. Let $f, g: \mathbb{R} \rightarrow \mathbb{R}$ be continuous functions.
(a) Prove that $f+g, f-g, f g$ are also continuous. [Hint: remember the limit laws?]
(b) Prove that f / g is continuous on the set $X=\{x \in \mathbb{R} \mid g(x) \neq 0\} \subset \mathbb{R}$.
(c) Deduce that any polynomial is continuous everywhere on \mathbb{R}, and a rational function $f(x)=$ $p(x) / q(x)$ is continuous everywhere it is defined.
4. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function. Prove that then the set $A=\{x \in \mathbb{R} \mid f(x)>0\}$ is open in \mathbb{R}. [Hint: otherwise, set A contains a point $x \in \partial A$; then choose a sequence $x_{n} \in A^{\prime}$ such that $\lim x_{n}=x$, where $A^{\prime}=\{x \in \mathbb{R} \mid f(x) \leq 0\}$ is the complement of A.]
*5. Modify the previous proof to show that if $f: \mathbb{R} \rightarrow \mathbb{R}$ is a continuous function, and $U \subset \mathbb{R}$ is open, then $f^{-1}(U)=\{x \in \mathbb{R} \mid f(x) \in U\}$ is also open.
*6. Now show the converse: if, for any open set $U \subset \mathbb{R}, f^{-1}(U)=\{x \in \mathbb{R} \mid f(x) \in U\}$ is also open, then $f: \mathbb{R} \rightarrow \mathbb{R}$ is a continuous function.

